Claim Missing Document
Check
Articles

Found 4 Documents
Search

Evaluation of Potential Usage of Incremental-Type Rotary Encoder Application for Angle Sensing in Steering System Kaleg, Sunarto; Muharam, Aam; Kurnia, M. Redho; Hapid, Abdul
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 5, No 2 (2014)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2571.994 KB) | DOI: 10.14203/j.mev.2014.v5.83-90

Abstract

The main target of a steering system is that the driver can change vehicle trajectory in accordance with the desired direction.  Power steering has become a standard feature in automobile.  It provides assisting power when the driver turns the steering wheel. The well-known power steering types include; Hydraulic Power Steering (HPS), Electro - Hydraulic Power Steering (EHPS), and Electric Power Steering (EPS). EHPS or EPS uses an Electronic Control Unit (ECU) which is specific for each vehicle. The ECU should be able to regulate power of electric motor to provide corresponding assisting power for the steering wheel. Therefore ECU requires input signals, one of which is vehicle wheel angle that can be indicated from the vehicle steering wheel angle. Incremental type of Rotary Encoder (RE) is used in steering angle sensor on a minibus. RE specification used was 60 pulses per rotation and the minibus steering transmission specification is 3.5 round of right wheel off angle to the left wheel off angle. So we get the RE angular resolution 6ºper pulse and 105 number of pulses to half of the steering transmission ratio. Repeatability then tested against to a steering angle counter module. Testing is done with a test cycle consisting of 3 repetitions: condition center of the steering wheel, the steering wheel is turned to full right, then to the full left, then back to the right up to the steering wheel center. The results obtained 2 pulses deviation, or equivalent to 12º of steering angle.
Active battery balancing system for electric vehicles based on cell charger Amin, Amin; Budiman, Alexander Christantho; Kaleg, Sunarto; Sudirja, Sudirja; Hapid, Abdul
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1729-1737

Abstract

Cell imbalance can cause negative effects such as early stopping of the battery charging and discharging process which can reduce its capacity. In the previous active balancing research, the energy used for the balancing process was taken from the cell or battery pack, resulting in drop of electric vehicle driving range. In this paper, a cell charger based battery balancing system is proposed with a reduction in the number of switches. The use of a cell charger aims to increase the usable energy of the battery pack, since the energy used for the balancing process is taken directly from the grid. The use of fewer switches aims to reduce the cost and space used on the battery management system (BMS) hardware. The charger used for the balancing process has a maximum current of 3 A and a maximum voltage of 3.65 V while the number of switches used is n+5 for n batteries. A 15S1P 200 Ah LiFePO4 battery pack consists of 15 cells used for testing purpose. The test results show that the time needed to equalize the 15 cell battery voltage reaches 6 hours from the difference between the highest and lowest battery cell voltages of 145.1 mV to 15.1 mV.
Addressing Fire Safety, Ground Impact Resistance, and Thermal Management in Composite EV Battery Enclosures: A Review Kaleg, Sunarto; Sumarsono, Danardono Agus; Whulanza, Yudan; Budiman, Alexander Christantho
Automotive Experiences Vol 7 No 3 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.12540

Abstract

Lithium-ion batteries are fundamental to modern electric vehicles, offering high energy density, long cycle life, and low self-discharge rates. However, thermal runaway—a critical safety issue involving uncontrolled temperature increases—can lead to fire or explosion. Ensuring flame retardancy is crucial in accidents where battery packs are exposed to external fires. Additionally, battery packs are susceptible to mechanical stresses and potential damage from ground impacts like debris or uneven road surfaces. Effective thermal management significantly impacts capacity and longevity. This review emphasizes the importance of researching flame retardancy, ground impact resistance, and thermal management, especially in composite battery enclosures. Composites serve as a lightweight alternative to metals and help overcome one of the main constraints of EVs, which is weight. Ground impact refers to the physical force battery packs endure during collisions, hitting potholes, debris, or accidents. Therefore, understanding the effects of ground impact on battery enclosures is crucial for design considerations. Effective thermal management is also essential, as it directly affects the performance and safety of Lithium-ion battery packs in EVs.
A Systematic Literature Review of Risk Assessment Methodologies for Battery Electric Vehicles Gusti, Ayudhia Pangestu; Waskito, Dwitya Harits; Kaleg, Sunarto; Bowo, Ludfi Pratiwi; Pratama, Angjuang; Maulani, Defi Rizki; Varadita, Ayumi Putri; Nugroho, Sinung; Wiguna, I Kadek Candra Parmana
Automotive Experiences Vol 8 No 1 (2025)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.12835

Abstract

This systematic literature review investigates risk assessment methodologies for Battery Electric Vehicles (BEVs), highlighting their diversity and effectiveness in addressing emerging safety challenges. With the rapid global adoption of BEVs, there is an increasing need for robust methodologies to assess risks such as thermal runaway (TR), degradation, and operational failures. This review highlights techniques such as fuzzy failure mode and effect analysis (FMEA), hybrid neural networks, bayesian networks (BN), and entropy weight methods. These tools effectively identify and mitigate risks; however, they face challenges in providing holistic, system-level safety assessments and adapting to long-term, real-world conditions. Unlike previous works, this study integrates interdependent BEV subsystems into unified risk models and examines underexplored areas such as maritime transport safety. The transport of BEVs by vessels presents unique risks, including high humidity and confined cargo spaces, which intensify the battery safety challenges. Tools like FMEA and real-time monitoring systems are critical to mitigate these risks. The findings highlight the growing reliance on real-time diagnostics and advanced algorithms for enhancing BEV safety and reliability. By identifying gaps and proposing recommendations, this review aims to support the development of standardized frameworks to ensure BEV safety across various environments and operational scenarios, contributing to their continued global adoption.