Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen)
Vol 5, No 4 (2024): Edisi Oktober

Application of Learning Rate in Artificial Neural Networks to Increase Prediction Accuracy on Rubber Tree Maintenance Costs

Sihombing, Erene Gernaria (Unknown)
Aristawati, Ester (Unknown)
Rinawati, R (Unknown)
Handayanna, Frisma (Unknown)
Dewi, Linda Sari (Unknown)



Article Info

Publish Date
30 Oct 2024

Abstract

This research aims to explore the impact of various learning rate values in artificial neural networks (ANN) in increasing the accuracy of predicting rubber tree maintenance costs. Using a dataset that includes factors such as tree age, soil conditions, weather, and maintenance methods, an ANN model is built and tested with various learning rate values to find optimal parameters. The research results show that the influence of various learning rate values on the performance of artificial neural networks (ANN) in predicting rubber tree maintenance costs varies significantly. From the training and testing results, learning rate 0.1 shows the best results with MSE 0.00995387 and 75% accuracy on training data, and MSE 0.00976614 and 83% accuracy on testing data. This conclusion emphasizes the importance of choosing the right learning rate value in applying ANN to predict rubber tree maintenance costs, which is expected to help plantation managers improve operational efficiency and cost management.

Copyrights © 2024






Journal Info

Abbrev

kesatria

Publisher

Subject

Computer Science & IT Control & Systems Engineering

Description

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen) adalah sebuah jurnal peer-review secara online yang diterbitkan bertujuan sebagai sebuah forum penerbitan tingkat nasional di Indonesia bagi para peneliti, profesional, Mahasiswa dan praktisi dari industri dalam bidang Ilmu ...