Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI)
Vol. 13 No. 3 (2024)

Classification of Lung Diseases in X-Ray Images Using Transformer-Based Deep Learning Models

Mahajaya, Nyoman Sarasuartha (Unknown)
Putu Desiana Wulaning Ayu (Unknown)
Roy Rudolf Huizen (Unknown)



Article Info

Publish Date
01 Dec 2024

Abstract

This research evaluates the performance of two Transformer models, the Vision Transformer (ViT) and Swin Transformer, in the analysis of thoracic X-ray images. The study's objective is to determine whether Transformer models can enhance diagnostic accuracy for lung diseases, considering challenges such as early symptom variability and similar radiological signs. The dataset includes 21,165 X-ray images, featuring 3,616 COVID-19 cases, 10,192 normal images, 6,012 images of Lung Opacity, and 1,345 pneumonia images. Model development involved tuning hyperparameters such as epoch numbers and optimizer choice. The results indicate that using the AdamW and Adamax optimizers achieves an optimal balance between computational efficiency and accuracy. The Swin Transformer model, using the Adamax optimizer, reached the highest testing accuracy of 96.10% in 33,802.70 seconds, while the Vision Transformer achieved a testing accuracy of 95.10% in 33,503.10 seconds.

Copyrights © 2024






Journal Info

Abbrev

janapati

Publisher

Subject

Computer Science & IT Education Engineering

Description

Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) is a collection of scientific articles in the field of Informatics / ICT Education widely and the field of Information Technology, published and managed by Jurusan Pendidikan Teknik Informatika, Fakultas Teknik dan Kejuruan, Universitas ...