JURTEKSI
Vol 11, No 2 (2025): Maret 2025

OPTIMIZATION OF CART ALGORITHM BASED ON ANT BE COLONY FEATURE SELECTION FOR STUNTING DIAGNOSIS

Subarkah, Pungkas (Unknown)
Ikhsan, Ali Nur (Unknown)
Wahyudi, Rizki (Unknown)
Rofiqoh, Dayana (Unknown)



Article Info

Publish Date
19 Mar 2025

Abstract

Abstract: One of the main health problems in children is stunting which is one of the concerns in the Sustainable Development Goals (SDGs). Specifically in Indonesia, the prevalence of stunting in 2024 is 21.6%. This figure is still relatively high, because the target prevalence of stunting is 14%. This study aims to implement machine learning knowledge through the Classification And Regression Trees (CART) algorithm based on Ant Be Colony (ABC) feature selection which aims to determine the increase in accuracy in analyzing stunting datasets. The data used comes from Kaggle which consists of 16500 datasets. The dataset consists of gender, age, birth length, birth weight, body length, body weight, breastfeeding and stunting status. The research methods used are data collection, data preprocessing, classification, and evaluation using K-fold cross validation. The results obtained in this research are the implementation of the CART algorithm obtained a value of 89.86% and the results of CART with Ant Be Colony (ABC) feature selection, which obtained an accuracy value of 93.65%. This shows that there is an increase in the accuracy value in the use of CART algorithm optimization and Ant Be Colony (ABC) feature selection by 3.76%. With the research results that have been obtained, it can be categorized as excellent accuracy value excellent. It is hoped that further research can be carried out by adding other classification algorithms or adding feature selection.            Keywords: classification; feature selection; optimazation; stunting Abstrak: Salah satu masalah kesehatan utama pada anak adalah stunting yang menjadi salah satu perhatian dalam Sustainable Development Goals (SDGs). Khusus di Indonesia angka Pravelensi stunting pada tahun 2024 di angka 21.6%. Angka ini masih tergolong tinggi, karena target angka pravelensi stunting ialah 14%. Penelitian ini bertujuan untuk mengimplementasikan pengetahuan machine learning melalui algoritma Classification And Regression Trees (CART) berbasis seleksi fitur Ant Be Colony (ABC) yang bertujuan untuk mengetahui peningkatan akurasi dalam menganalisis dataset stunting. Data yang digunakan bersumber dari Kaggle yang terdiri dari 16500 dataset. Dataset terdiri dari jenis kelamin, usia, panjang lahir, berat lahir, panjangg badan, berat badan, menyusui dan status stunting.  Metode penelitian yang digunakan adalah pengumpulan data, preprocessing data, klasifikasi, dan evaluasi menggunakan K-fold cross validation. Hasil yang diperoleh pada penelitian ini adalah Implementasi algoritma CART memperoleh nilai sebesar 89,86% dan hasil seleksi fitur CART dengan Ant Be Colony (ABC) memperoleh nilai akurasi sebesar 93,65%. Hal ini menunjukkan adanya peningkatan nilai akurasi pada penggunaan optimasi algoritma CART dan pemilihan fitur Ant Be Colony (ABC) sebesar 3,76%. Dengan hasil penelitian yang telah diperoleh dapat dikategorikan nilai akurasi yang diperoleh sangat baik. Diharapkan dapat dilakukan penelitian selanjutnya dengan menambahkan algoritma klasifikasi lain atau menambahkan seleksi fitur. Kata kunci: klasifikasi; optimalisasi; seleksi fitur; stunting

Copyrights © 2025






Journal Info

Abbrev

jurteksi

Publisher

Subject

Computer Science & IT

Description

JURTEKSI (Jurnal Teknologi dan Sistem Informasi) is a scientific journal which is published by STMIK Royal Kisaran. This journal published twice a year on December and June. This journal contains a collection of research in information technology and computer ...