Claim Missing Document
Check
Articles

Found 4 Documents
Search

PELATIHAN E-MODUL INTERAKTIF BERBASIS TEKNOLOGI INFORMASI UNTUK MENINGKATKAN LITERASI DIGITAL BAGI GURU Subarkah, Pungkas; Prasetyo Kartika, Nur Kholifah Dwi; Rofiqoh, Dayana; Arsi, Primandani; Marcos, Hendra
Jurnal Abdi Nusa Vol. 4 No. 3 (2024): October 2024
Publisher : LPPM Universitas Nusa Putra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52005/abdinusa.v4i3.311

Abstract

Mastering information technology, especially in the field of education for a teacher in the current era, is indeed a must that must be owned by each individual teacher. For this reason, professional flip pdf application training is needed to improve the ability to collaborate on more interactive learning media for students, for teachers of MI Muhammadiyah Wangon, Banyumas Regency. The purpose of this training is to provide knowledge and skills for teachers in optimizing information technology, especially the professional flip pdf application to support improving the ability to collaborate learning methods for students. The implementation method used is the Community Language Learning (CLL) method which consists of the preparation stage, implementation stage and evaluation stage. The results of this service during the training were active participant participation and the results obtained with the pre-test and post-test, then out of 15 participants, 97% of the trainees experienced an increase in their ability to use the professional flip pdf application. This activity is expected to contribute to efforts to improve information technology skills among teachers, especially in supporting teaching and learning activities for students to make them more interactive
OPTIMIZATION OF CART ALGORITHM BASED ON ANT BE COLONY FEATURE SELECTION FOR STUNTING DIAGNOSIS Subarkah, Pungkas; Ikhsan, Ali Nur; Wahyudi, Rizki; Rofiqoh, Dayana
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 2 (2025): Maret 2025
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i2.3579

Abstract

Abstract: One of the main health problems in children is stunting which is one of the concerns in the Sustainable Development Goals (SDGs). Specifically in Indonesia, the prevalence of stunting in 2024 is 21.6%. This figure is still relatively high, because the target prevalence of stunting is 14%. This study aims to implement machine learning knowledge through the Classification And Regression Trees (CART) algorithm based on Ant Be Colony (ABC) feature selection which aims to determine the increase in accuracy in analyzing stunting datasets. The data used comes from Kaggle which consists of 16500 datasets. The dataset consists of gender, age, birth length, birth weight, body length, body weight, breastfeeding and stunting status. The research methods used are data collection, data preprocessing, classification, and evaluation using K-fold cross validation. The results obtained in this research are the implementation of the CART algorithm obtained a value of 89.86% and the results of CART with Ant Be Colony (ABC) feature selection, which obtained an accuracy value of 93.65%. This shows that there is an increase in the accuracy value in the use of CART algorithm optimization and Ant Be Colony (ABC) feature selection by 3.76%. With the research results that have been obtained, it can be categorized as excellent accuracy value excellent. It is hoped that further research can be carried out by adding other classification algorithms or adding feature selection.            Keywords: classification; feature selection; optimazation; stunting Abstrak: Salah satu masalah kesehatan utama pada anak adalah stunting yang menjadi salah satu perhatian dalam Sustainable Development Goals (SDGs). Khusus di Indonesia angka Pravelensi stunting pada tahun 2024 di angka 21.6%. Angka ini masih tergolong tinggi, karena target angka pravelensi stunting ialah 14%. Penelitian ini bertujuan untuk mengimplementasikan pengetahuan machine learning melalui algoritma Classification And Regression Trees (CART) berbasis seleksi fitur Ant Be Colony (ABC) yang bertujuan untuk mengetahui peningkatan akurasi dalam menganalisis dataset stunting. Data yang digunakan bersumber dari Kaggle yang terdiri dari 16500 dataset. Dataset terdiri dari jenis kelamin, usia, panjang lahir, berat lahir, panjangg badan, berat badan, menyusui dan status stunting.  Metode penelitian yang digunakan adalah pengumpulan data, preprocessing data, klasifikasi, dan evaluasi menggunakan K-fold cross validation. Hasil yang diperoleh pada penelitian ini adalah Implementasi algoritma CART memperoleh nilai sebesar 89,86% dan hasil seleksi fitur CART dengan Ant Be Colony (ABC) memperoleh nilai akurasi sebesar 93,65%. Hal ini menunjukkan adanya peningkatan nilai akurasi pada penggunaan optimasi algoritma CART dan pemilihan fitur Ant Be Colony (ABC) sebesar 3,76%. Dengan hasil penelitian yang telah diperoleh dapat dikategorikan nilai akurasi yang diperoleh sangat baik. Diharapkan dapat dilakukan penelitian selanjutnya dengan menambahkan algoritma klasifikasi lain atau menambahkan seleksi fitur. Kata kunci: klasifikasi; optimalisasi; seleksi fitur; stunting
OPTIMIZATION OF CART ALGORITHM BASED ON ANT BE COLONY FEATURE SELECTION FOR STUNTING DIAGNOSIS Subarkah, Pungkas; Ikhsan, Ali Nur; Wahyudi, Rizki; Rofiqoh, Dayana
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 2 (2025): Maret 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i2.3579

Abstract

Abstract: One of the main health problems in children is stunting which is one of the concerns in the Sustainable Development Goals (SDGs). Specifically in Indonesia, the prevalence of stunting in 2024 is 21.6%. This figure is still relatively high, because the target prevalence of stunting is 14%. This study aims to implement machine learning knowledge through the Classification And Regression Trees (CART) algorithm based on Ant Be Colony (ABC) feature selection which aims to determine the increase in accuracy in analyzing stunting datasets. The data used comes from Kaggle which consists of 16500 datasets. The dataset consists of gender, age, birth length, birth weight, body length, body weight, breastfeeding and stunting status. The research methods used are data collection, data preprocessing, classification, and evaluation using K-fold cross validation. The results obtained in this research are the implementation of the CART algorithm obtained a value of 89.86% and the results of CART with Ant Be Colony (ABC) feature selection, which obtained an accuracy value of 93.65%. This shows that there is an increase in the accuracy value in the use of CART algorithm optimization and Ant Be Colony (ABC) feature selection by 3.76%. With the research results that have been obtained, it can be categorized as excellent accuracy value excellent. It is hoped that further research can be carried out by adding other classification algorithms or adding feature selection.            Keywords: classification; feature selection; optimazation; stunting Abstrak: Salah satu masalah kesehatan utama pada anak adalah stunting yang menjadi salah satu perhatian dalam Sustainable Development Goals (SDGs). Khusus di Indonesia angka Pravelensi stunting pada tahun 2024 di angka 21.6%. Angka ini masih tergolong tinggi, karena target angka pravelensi stunting ialah 14%. Penelitian ini bertujuan untuk mengimplementasikan pengetahuan machine learning melalui algoritma Classification And Regression Trees (CART) berbasis seleksi fitur Ant Be Colony (ABC) yang bertujuan untuk mengetahui peningkatan akurasi dalam menganalisis dataset stunting. Data yang digunakan bersumber dari Kaggle yang terdiri dari 16500 dataset. Dataset terdiri dari jenis kelamin, usia, panjang lahir, berat lahir, panjangg badan, berat badan, menyusui dan status stunting.  Metode penelitian yang digunakan adalah pengumpulan data, preprocessing data, klasifikasi, dan evaluasi menggunakan K-fold cross validation. Hasil yang diperoleh pada penelitian ini adalah Implementasi algoritma CART memperoleh nilai sebesar 89,86% dan hasil seleksi fitur CART dengan Ant Be Colony (ABC) memperoleh nilai akurasi sebesar 93,65%. Hal ini menunjukkan adanya peningkatan nilai akurasi pada penggunaan optimasi algoritma CART dan pemilihan fitur Ant Be Colony (ABC) sebesar 3,76%. Dengan hasil penelitian yang telah diperoleh dapat dikategorikan nilai akurasi yang diperoleh sangat baik. Diharapkan dapat dilakukan penelitian selanjutnya dengan menambahkan algoritma klasifikasi lain atau menambahkan seleksi fitur. Kata kunci: klasifikasi; optimalisasi; seleksi fitur; stunting
THE EFFECTIVENESS OF USING SPEECHACE IN IMPROVING THE VOCABULARY OF THE STUDENTS AT THE LANGUAGE CENTER UNIT Riandini, Dini; Romadhoni, Nova Salma; Rofiqoh, Dayana
Language and Education Journal Vol. 10 No. 2 (2025): Language and Education Journal
Publisher : Universitas Islam Ogan Komering Ilir Kayuagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52237/lej.v10i2.294

Abstract

An important component in learning languages, especially English, is developing vocabulary skills. However, students experience difficulties in understanding vocabulary. The problems they face include a lack of vocabulary and audio speed. The problem of vocabulary skills in students can be overcome with the help of the Speechace application. This study aims to determine whether there is a significant difference in vocabulary mastery skills between students who received instruction using the Speechace application and those who did not. This study was conducted using a quasi-experimental method. To analyze the data, a t-test was used. Based on the results of the independent sample t-test, it was revealed that the pvalue (0.000) was smaller than the αvalue (0.05) and the t-value obtained (8.463) was greater than the t-table value (4.734). This indicates that students who received instruction using the Speechace application and those who did not have significantly different vocabulary mastery skills. Therefore, students can learn vocabulary more effectively by using the Speechace application as a learning aid, particularly for English.