Penelitian ini mengembangkan sistem klasifikasi sampah menggunakan algoritma Convolutional Neural Network (CNN) untuk membedakan sampah organik dan anorganik. Arsitektur CNN yang digunakan terdiri dari input layer berukuran 150 x 150 x 3, tiga lapisan konvolusi dengan filter 3x3 yang jumlahnya bertambah secara bertahap (32, 64, dan 128), dilengkapi dengan fungsi aktivasi ReL-U dan lapisan MaxPooling 2x2. Model juga menggunakan dense layer dengan 128 neuron, dropout 0.5, dan output layer dengan aktivasi sigmoid. Dalam proses pelatihan, model dikompilasi menggunakan optimizer Adam dengan learning rate 0.001 dan binary crossentropy sebagai loss function. Hasil evaluasi menunjukkan bahwa model mencapai akurasi yang sangat baik sebesar 94.88% pada data uji, membuktikan efektivitas model dalam mengklasifikasikan sampah. Tingkat akurasi yang tinggi ini menunjukkan bahwa arsitektur CNN yang dirancang mampu mempelajari dan mengenali pola-pola penting dari citra sampah dengan baik. Penelitian ini memberikan kontribusi signifikan dalam pengembangan sistem pemilahan sampah otomatis yang dapat membantu meningkatkan efisiensi pengelolaan sampah. Model yang dikembangkan memiliki potensi besar untuk diimplementasikan dalam aplikasi praktis dan dapat diandalkan untuk sistem klasifikasi sampah yang efektif.
Copyrights © 2025