Claim Missing Document
Check
Articles

Found 17 Documents
Search

Pelatihan Instalasi Jaringan Komputer Menggunakan Simulasi Cisco pada SMK Methodist Tanjung Morawa Frans Mikael Sinaga; Sio Jurnalis Pipin; Heru Kurniawan
Journal of Social Responsibility Projects by Higher Education Forum Vol 4 No 1 (2023): Juli 2023
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/jrespro.v4i1.3633

Abstract

SMK Swasta Methodist Tanjung Morawa is one of the private schools under the auspices of Yayasan Methodist Kasih Imanuel Indonesia, which was established in 2008. Tanjung Morawa Methodist Private Vocational School has various majors, one of which is Network and Computer Engineering (TKJ). Network installation is one of the most interesting subjects to discuss because the students have studied it before and it is already a lesson that is in accordance with the majors of the students of Tanjung Morawa Methodist Private Vocational School, namely Computer Network Engineering (TKJ). The students have learned several computer network simulation applications such as virtual boxes but the network simulation applications studied are still limited, therefore, the Faculty of Informatics Universitas Mikroskil offers activities in the form of computer network installation training using Cisco simulation to improve the ability of students to have better competencies. This training activity lasted for 2 days and was carried out in the computer laboratory of Universitas Mikroskil. During this training activity the students were given pre-test questions, materials and case studies, post-test and final feedback.
Sentiment Analysis Classification of ChatGPT on Twitter Big Data in Indonesia Using Fast R-CNN Sio Jurnalis Pipin; Frans Mikael Sinaga; Sunaryo Winardi; Muhammad Noor Hakim
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 7, No 4 (2023): Oktober 2023
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v7i4.6816

Abstract

The advent of OpenAI's ChatGPT, a large language model (LLM) proficient in various fields including artificial intelligence (AI) and natural language processing (NLP), has ignited a plethora of opinions and discussions, especially on social media platforms like Twitter in Indonesia. This research seeks to delve into the intricate dynamics of these discussions, aiming to map both the commendations and criticisms surrounding ChatGPT's technological advancements and potential negative impacts. Utilizing deep learning-based sentiment analysis techniques, the study employs Convolutional Neural Network (CNN) and Fast Region-based Convolutional Network (Fast R-CNN) to analyze a dataset consisting of 7,604 tweets categorized into "Positive", "Negative", and "Neutral" sentiments. The objective is to provide a comprehensive understanding of the societal perceptions towards this artificial intelligence technology in the Indonesian context. The methodology encompasses several stages including data collection from Twitter, data cleaning, and pre-processing, followed by the application of CNN and Fast R-CNN models for sentiment analysis. The findings indicate a superior performance of the Fast R-CNN model, achieving an accuracy rate of 94.5%, compared to the CNN model with an accuracy rate of 86%. In conclusion, the research highlights the effectiveness of integrating Fast R-CNN in sentiment analysis to extract deeper insights from Twitter data in Indonesia. This study not only contributes to the scientific literature in the fields of sentiment analysis and natural language processing but also aids in formulating informed strategies to navigate the challenges and opportunities presented by artificial intelligence technology in the Indonesian landscape. Future research avenues should focus on optimizing this sentiment analysis model and exploring other potential applications of this technology in the dynamically evolving digital landscape in Indonesia.
Analyzing Sentiment with Self-Organizing Map and Long Short-Term Memory Algorithms Frans Mikael Sinaga; Sio Jurnalis Pipin; Sunaryo Winardi; Karina Mannita Tarigan; Ananda Putra Brahmana
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 23 No 1 (2023)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v23i1.3332

Abstract

This research delves into the impact of Chat Generative Pre-trained Transformer, one of Open Artificial Intelligence Generative Pretrained Transformer models. This model underwent extensive training on a vast corpus of internet text to gain insights into the mechanics of human language and its role in forming phrases, sentences, and paragraphs. The urgency of this inquiry arises from Chat Generative Pre-trained Transformer emergence, which has stirred significant debate and captured widespread attention in both research and educational circles. Since its debut in November 2022, Chat Generative Pre-trained Transformer has demonstrated substantial potential across numerous domains. However, concerns voiced on Twitter have centered on potential negative consequences, such as increasedforgery and misinformation. Consequently, understanding public sentiment toward Chat Generative Pre-trained Transformer technology through sentiment analysis has become crucial. The research’s primary objective is to conduct Sentiment Analysis Classification of Chat Generative Pre-trained Transformer regarding public opinions on Twitter in Indonesia. This goal involves quantifying and categorizing public sentiment from Twitter’s vast data pool into three clusters: positive, negative, or neutral. In the data clustering stage, the Self-Organizing Map technique is used. After the text data has been weighted and clustered, the next step involves using the classification technique with LongShort-Term Memory to determine the public sentiment outcomes resulting from the presence of Chat Generative Pre-trained Transformer technology. Rigorous testing has demonstrated the robust performance of the model, with optimal parameters: relu activation function, som size of 5, num epoch som and num epoch lstm both at 128, yielding an impressive 95.07% accuracy rate.
Pelatihan Pembuatan Konten Pembelajaran Berbasis Video pada SMA Methodist 6 Frans Mikael Sinaga; Syanti Irviantina; Sio Jurnalis Pipin
Journal of Social Responsibility Projects by Higher Education Forum Vol 4 No 3 (2024): Maret 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/jrespro.v4i3.4588

Abstract

The use of information technology to support the teaching and learning process is considered important and necessary. It is not only the educators or teachers who are demanded to have the ability to use and utilize information technology, but students as well, in order to meet digital literacy competencies and be able to compete globally. At Swasta Methodist 6 High School, community service activities are carried out with the aim of improving students understanding in creating learning content using Canva and Wondershare Filmora tools. The availability of good facilities and infrastructure at school greatly assists students in utilizing technology to support the learning process. This activity was carried out for 2 days in the school's laboratory, and was attended by 43 students. The evaluation conducted with a pre-test and post-test showed an increase of 80% in the post-test for questions related to the use of Canva tools, and an increase of 60% in the post-test for questions related to the use of Wondershare Filmora tools.
Optimization of Sentiment Analysis Classification of ChatGPT on Big Data Twitter in Indonesia using BERT Sinaga, Frans Mikael; Purba, Ronsen; Pipin, Sio Jurnalis; Lestari, Wulan Sri; Winardi, Sunaryo
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 8, No 3 (2024): Juli 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v8i3.7861

Abstract

This research is grounded in the emergence of ChatGPT technology, supported by prior and similar studies. The urgency of the issue is highlighted by previous research indicating non-convergent classification outcomes in LSTM (Long Short-Term Memory) methods due to suboptimal hyperparameter settings and limitations in understanding text data within Big Data. The presence of ChatGPT technology brings both benefits and potential misuse, such as copyright infringement, unauthorized news extraction, and violations of accountability principles. Understanding public sentiment towards the presence of ChatGPT technology is crucial. The research aims to implement the BERT (Bidirectional Encoder Representations from Transformers) method to achieve accurate and convergent sentiment analysis classification. This study involves data preprocessing stages using Natural Language Processing (NLP) techniques. Text data, already vectorized, is classified using BERT to determine public sentiment (positive, negative, neutral) towards ChatGPT technology, ensuring greater accuracy, convergence, and contextual relevance. Performance testing of the BERT model is conducted using a Confusion Matrix. With parameters set to Max Sequence Length = 128 and Batch Size = 16, the highest classification accuracy achieved is 93.4%.
Classification of Big Data Stunting Using Support Vector Regression Method at Stella Maris Medan Maternity Hospital Chen, Kelvin; Adriansyah, R. A. Fattah; Juliandy, Carles; Sinaga, Frans Mikael; Liko, Frederick; Angkasa, Aswin
Indonesian Journal of Artificial Intelligence and Data Mining Vol 7, No 2 (2024): September 2024
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v7i2.31112

Abstract

This study aims to classify big data related to stunting using the Support Vector Regression (SVR) method at Stella Maris Maternity Hospital, Medan. Stunting, a condition of impaired growth in children due to chronic malnutrition and repeated infections, affects physical and cognitive development. With increasing health data, big data processing methods are essential for accurate information. SVR was chosen for handling high-dimensional and non-linear data, providing precise results. The study uses medical information, nutritional history, and socio-economic factors collected from hospital patients. The research process includes data collection, pre-processing to address missing values and outliers, normalization, and SVR application. Final results use SVR with Voting Classifier combining Support Vector Classifier (SVC), Random Forest (RF), and Gradient Boosting (GB), achieving an accuracy of 91.67%. This approach effectively identifies main stunting factors, aiding clinical decision-making and intervention programs. The study showcases big data and machine learning's potential in healthcare, serving as a model for improving health services and monitoring children's health conditions.
Forecasting Climate Change Patterns to Improving Rice Harvest Using SVR for Achieving Green Economy Juliandy, Carles; Kelvin, Kelvin; Halim, Apriyanto; Pipin, Sio Jurnalis; Sinaga, Frans Mikael; Lestari, Wulan Sri
Indonesian Journal of Artificial Intelligence and Data Mining Vol 7, No 2 (2024): September 2024
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v7i2.32393

Abstract

The consistently declining rice harvest will cause several economic and environmental problems. The unstable and unpredictable climate change was believed as the main problem of the declining rice harvest. We proposed a method for forecasting climate change to help the farmer in their rice cultivation. We used Support Vector Regression (SVR) to improve algorithm steps such as normalizing the data and applying an Adaptive Linear Combiner (ALC) to optimize the dataset before we processed it with the algorithm. Our model gets 95% accuracy as measured with the confusion matrix. We believe our model will help the farmers in their rice cultivation with good climate forecasting. A further benefit of this research we belief that with the well-forecasted climate, the usage of pesticides will decrease and will help the vision of the Indonesian government with a green economy
Exploring New Frontiers: XCEEMDAN, Bidirectional LSTM, Attention Mechanism, and Spline in Stock Price Forecasting Kelvin, Kelvin; Sinaga, Frans Mikael; Winardi, Sunaryo; Susmanto, Susmanto
Indonesian Journal of Artificial Intelligence and Data Mining Vol 7, No 2 (2024): September 2024
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v7i2.29649

Abstract

The Attention Mechanism is acknowledged as a machine learning method proficient in managing relationships within sequential data, surpassing traditional models in this regard. However, the unique characteristics of stock data, including substantial volatility, multidimensionality, and non-linear patterns, present challenges in attaining accurate forecasts of stock prices. This research aims to tackle these hurdles by enhancing a prior model through the incorporation of an Attention Mechanism, resulting in an enhanced model. The forecasted data are standardized and prepared for analysis before undergoing signal decomposition into high and low-frequency components. Subsequently, the Attention Mechanism processes the high-frequency signals. Evaluation entails comparing the performance of the proposed model with that of the previous model using identical parameters. The findings indicate that the proposed model achieves a reduced RMSE value of 0.5708777053 compared to the previous model's average RMSE value of 0.5823726212, indicating enhanced accuracy in stock price prediction. This approach is anticipated to make a substantial contribution to the advancement of more dependable and effective stock price prediction models, addressing the limitations of prior methodologies
Membangun Fondasi Pemrograman dengan Python pada SMA Swasta Methodist Tanjung Morawa Kelvin; Sinaga, Frans Mikael; Kurniawan, Heru; Winardi, Sunaryo; Saragih, Yuni Marlina
Dedikasi Sains dan Teknologi (DST) Vol. 4 No. 2 (2024): Artikel Riset Nopember 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/dst.v4i2.4875

Abstract

SMA Swasta Methodist Tanjung Morawa adalah salah satu sekolah swasta di bawah naungan Yayasan Methodist Kasih Imanuel Indonesia, yang berdiri sejak tahun 2008. SMA Swasta Methodist Tanjung Morawa memiliki ketertarikan terhadap teknologi robot yang merupakan teknologi yang saat ini sedang banyak-banyaknya diterapkan diberbagai sector. Salah satu bekal yang dapat dipersiapkan untuk para murid adalah pemahaman dalam menggunakan Bahasa pemrograman, sehingga para siswa nantinya dapat membangun sendiri berbagai instruksi dalam membuat robot atau bahkan sekedar program sederhana. Untuk mendukung keinginan tersebut, Fakultas Informatika Universitas Mikroskil menawarkan kegiatan berupa pelatihan pengenalan salah satu Bahasa pemrograman yaitu python. Kegiatan pelatihan ini berlangsung selama 1 hari dan dilaksanakan di laboratorium komputer Universitas Mikroskil. Selama kegiatan pelatihan ini para siswa akan mendengarkan pemaparan materi, mengerjakan latihan-latihan sederhana dan quiz pada akhir pelatihan sebagai evaluasi untuk menilai sejauh mana pemahaman siswa tentang bahasa pemrograman setelah pelatihan.
Optimization of Sentiment Analysis Classification of ChatGPT on Big Data Twitter in Indonesia using BERT Sinaga, Frans Mikael; Purba, Ronsen; Pipin, Sio Jurnalis; Lestari, Wulan Sri; Winardi, Sunaryo
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 8, No 3 (2024): Juli 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v8i3.7861

Abstract

This research is grounded in the emergence of ChatGPT technology, supported by prior and similar studies. The urgency of the issue is highlighted by previous research indicating non-convergent classification outcomes in LSTM (Long Short-Term Memory) methods due to suboptimal hyperparameter settings and limitations in understanding text data within Big Data. The presence of ChatGPT technology brings both benefits and potential misuse, such as copyright infringement, unauthorized news extraction, and violations of accountability principles. Understanding public sentiment towards the presence of ChatGPT technology is crucial. The research aims to implement the BERT (Bidirectional Encoder Representations from Transformers) method to achieve accurate and convergent sentiment analysis classification. This study involves data preprocessing stages using Natural Language Processing (NLP) techniques. Text data, already vectorized, is classified using BERT to determine public sentiment (positive, negative, neutral) towards ChatGPT technology, ensuring greater accuracy, convergence, and contextual relevance. Performance testing of the BERT model is conducted using a Confusion Matrix. With parameters set to Max Sequence Length = 128 and Batch Size = 16, the highest classification accuracy achieved is 93.4%.