ComEngApp : Computer Engineering and Applications Journal
Vol. 11 No. 2 (2022)

Segmentation of the Lungs on X-Ray Thorax Image with CNN Architecture U-Net

Pranata, Teddi (Unknown)
Desiani, Anita (Unknown)
Suprihatin, Bambang (Unknown)
Hanum, Herlina (Unknown)
Efriliyanti, Filda (Unknown)



Article Info

Publish Date
01 Jun 2022

Abstract

Lungs are one of the most important parts of the human body. They are very susceptible to various disorders and diseases. For this reason, it is necessary to detect or diagnose the lungs. In this study, we present a method for lung segmentation using the CNN method U-Net architecture. The initial stage was preprocessed did a 1-1 correspondence to equalize the amount of training data and testing data and resized the image so all images have the same size. The process continued with the CLAHE (Contrast Limited Adaptive Histogram Equalization), and after that, the segmentation process was carried out according to the method. This study used a dataset from the Kaggle website. The results used the CNN method of the U-Net architecture in data get an average accuracy of 91.68%, sensitivity 92.80%, and specificity 89.15%, precision 95.07, and F1-Score 93. 92%. Based on the performance evaluation results, it was concluded that the method proposed in the study is great and valid in the lungs segmentation on X-Ray Thorax images.

Copyrights © 2022






Journal Info

Abbrev

comengapp

Publisher

Subject

Computer Science & IT Engineering

Description

ComEngApp-Journal (Collaboration between University of Sriwijaya, Kirklareli University and IAES) is an international forum for scientists and engineers involved in all aspects of computer engineering and technology to publish high quality and refereed papers. This Journal is an open access journal ...