Efriliyanti, Filda
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Variasi Thresholding untuk Segmentasi Pembuluh Darah Citra Retina Desiani, Anita; Zayanti, Des Alwine; Primartha, Rifkie; Efriliyanti, Filda; Andriani, Nur Avisa Calista
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 7, No 2 (2021): Volume 7 No 2
Publisher : Program Studi Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jp.v7i2.47205

Abstract

Segmentasi pembuluh darah pada retina diperlukan pada deteksi dini penyakit Diabetic Retinopathy pada citra retina. Penelitian ini menggunakan tiga tahapan yaitu pre-processing, segmentasi dan post-processing yang akan membandingkan hasil dari 3 metode segmentasi yang menggunakan nilai Thresholding yaitu Adaptive Thresholding, Binary Thresholding, dan Otsu Thresholding. Hasil pengujian terhadap tiga metode yang digunakan menunjukan bahwa metode Binary Thresholding mendapat rata-rata akurasi, sensitivitas dan spesifisitas tertinggi yaitu 95%, 58%, 98%. Untuk Adaptive Thresholding mendapat rata-rata akurasi sebesar 91%, sensitivitas 36%, spesititiftas 97%. Dan metode Otsu Thresholding mendapatkan rata-rata akurasi 86%, sensitivitas 22%, dan spesifisitas 90%.  Dari hasil ketiga metode ini dapat dilihat akurasi yang dihasilkan oleh metode Thresholding sudah sangat baik dalam melakukan segmentasi citra, tetapi nilai sensitivitas dari masing-masing metode Thresholding masih rendah. Hal ini dapat disimpulkan metode Thresholding masih sulit mendapatkan lebih banyak fitur pembuluh darah pada citra retina.
Segmentation of the Lungs on X-Ray Thorax Image with CNN Architecture U-Net Pranata, Teddi; Desiani, Anita; Suprihatin, Bambang; Hanum, Herlina; Efriliyanti, Filda
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 2 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Lungs are one of the most important parts of the human body. They are very susceptible to various disorders and diseases. For this reason, it is necessary to detect or diagnose the lungs. In this study, we present a method for lung segmentation using the CNN method U-Net architecture. The initial stage was preprocessed did a 1-1 correspondence to equalize the amount of training data and testing data and resized the image so all images have the same size. The process continued with the CLAHE (Contrast Limited Adaptive Histogram Equalization), and after that, the segmentation process was carried out according to the method. This study used a dataset from the Kaggle website. The results used the CNN method of the U-Net architecture in data get an average accuracy of 91.68%, sensitivity 92.80%, and specificity 89.15%, precision 95.07, and F1-Score 93. 92%. Based on the performance evaluation results, it was concluded that the method proposed in the study is great and valid in the lungs segmentation on X-Ray Thorax images.