Djtechno: Jurnal Teknologi Informasi
Vol 6, No 2 (2025): Agustus

HYBRID DEEP LEARNING RANDOM FOREST OPTIMASI PEMILIHAN FITUR UNTUK PREDIKSI CHURN INDUSTRI TELEKOMUNIKASI

Mutiarachim, Atika (Unknown)
Marutho, Dhendra (Unknown)
Yuniarti, Nur Atika (Unknown)
Pramudya, Ryan Arya (Unknown)
Tyoso, Jaluanto Sunu Punjul (Unknown)



Article Info

Publish Date
02 Aug 2025

Abstract

Customer churn merupakan tantangan kritis dalam industri telekomunikasi yang berdampak signifikan terhadap profitabilitas perusahaan. Penelitian ini mengusulkan pendekatan hybrid machine learning untuk memprediksi customer churn dengan mengintegrasikan deep learning dan random forest serta mengoptimalkan performa melalui seleksi fitur chi-square dan information gain. Dataset IBM Telco Customer Churn yang terdiri dari 7.043 sampel dengan 31 atribut digunakan dalam penelitian ini. Metodologi penelitian meliputi preprocessing data, implementasi 10-fold cross validation, aplikasi metode seleksi fitur, dan evaluasi performa menggunakan confusion matrix serta metrik klasifikasi biner. Hasil penelitian menunjukkan bahwa implementasi seleksi fitur secara signifikan meningkatkan akurasi prediksi, di mana akurasi tanpa seleksi fitur mencapai 97.00% (Deep Learning) dan 98.68% (Random Forest), sedangkan dengan seleksi fitur chi-square meningkat menjadi 97.97% (Deep Learning) dan 98.72% (Random Forest). Performa terbaik dicapai oleh kombinasi Random Forest dengan seleksi fitur information gain yang menghasilkan akurasi 98.75%, precision 98.37%, recall 99.96%, dan F-measure 99.16%. Temuan ini membuktikan efektivitas kombinasi algoritma ensemble dengan teknik seleksi fitur dalam mengoptimalkan prediksi customer churn untuk mendukung strategi retensi pelanggan yang lebih tepat sasaran

Copyrights © 2025






Journal Info

Abbrev

djtechno

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

Djtechno: Journal of Information Techhnology Research Jurnal ilmiah yang dikelola dan diterbitkan oleh Program Studi Teknologi Informasi, Fakultas Teknik dan Ilmu Komputer, Universitas Dharmawangsa, Medan, Indonesia. Jurnal Djtechno terbit pertama kali Vol 1. No.1 Juli Tahun 2020, jurnal ini ...