IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 4: August 2025

Contract-based federated learning framework for intrusion detection system in internet of things networks

Saputra, Yuris Mulya (Unknown)
Putri, Divi Galih Prasetyo (Unknown)
Putra, Jimmy Trio (Unknown)
Murti, Budi Bayu (Unknown)
Wahyono, Wahyono (Unknown)



Article Info

Publish Date
01 Aug 2025

Abstract

A plethora of national vital infrastructures connected to internet of things (IoT) networks may trigger serious data security vulnerabilities. To address the issue, intrusion detection systems (IDS) were investigated where the behavior and traffic of IoT networks are monitored to determine whether malicious attacks or not occur through centralized learning on a cloud. Nonetheless, such a method requires IoT devices to transmit their local network traffic data to the cloud, thereby leading to data breaches. This paper proposes a federated learning (FL)-based IDS on IoT networks aiming at improving the intrusion detection accuracy without privacy leakage from the IoT devices. Specifically, an IoT service provider can first motivate IoT devices to participate in the FL process via a contract-based incentive mechanism according to their local data. Then, the FL process is executed to predict IoT network traffic types without sending IoT devices’ local data to the cloud. Here, each IoT device performs the learning process locally and only sends the trained model to the cloud for the model update. The proposed FL-based system achieves a higher utility (up to 44%) than that of a non-contract-based incentive mechanism and a higher prediction accuracy (up to 3%) than that of the local learning method using a real-world IoT network traffic dataset.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...