Aluminum alloys suffer from deficiencies in surface performance due to insufficient resistance to corrosion and mechanical qualities in harsh environments. Therefore, it is crucial to apply a protective surface modification during the manufacturing process of the aluminum component. The electroless deposited Ni-P shows great potential as a protective coating due to its simple manufacturing process and outstanding performance. This study investigates the effect of oxalic acid concentration in the anodizing process on electroless Ni-P coating. In this study, Anodic Aluminum Oxide (AAO) is formed by an anodizing process on 0.3,0.5, and 0.7 oxalic acids prior to Ni-P electroless deposition. The resulting Ni-P layer has a nodular-like morphology with a size in the order of 0.5 m or less. Moreover, the AAO surface is covered by a thin and tightly formed layer of nickel particles. The EDX analysis shows the oxygen percentage falls by up to 70% after Ni deposition in all anodizing parameters, as compared to the anodized specimens alone. In addition, the nickel content gradually decreases as the concentration of oxalic acid increases from 0.3 M to 0.7 M.
                        
                        
                        
                        
                            
                                Copyrights © 2025