JOURNAL OF SCIENCE AND SOCIAL RESEARCH
Vol 8, No 3 (2025): August 2025

ANALISIS PERFORMANCE MODEL PREDIKSI HARGA JUAL MOBIL BEKAS MENGGUNAKAN MACHINE LEARNING

Sembiring, Muhammad Ardiansyah (Unknown)
Sibuea, Mustika Fitri Larasati (Unknown)
elfina, Novita (Unknown)



Article Info

Publish Date
29 Sep 2025

Abstract

Abstract: Cars are a very popular four-wheeled means of transportation today, so that many consumers or buyers are interested in buying new or used cars depending on their respective economies. One factor that influences consumer interest in buying a car is price. Price greatly influences the sustainability of consumers in buying a car. It is necessary to estimate the estimated price of a used car based on criteria such as mileage, taxes, fuel consumption, and engine capacity. Estimation using regression method where in regression method there are 7 more methods including (1) Linear Regression, (2) Support Vector Regression – Linear, (3) Support Vector Regression – RBF, (4) Decision Tree Regression, (5) Random Forest Regressor, (6) Gradient Boosting Regression, (7) NLP Regressor applied in this research. Based on the 7 regression methods, the best method with the best accuracy value will be sought which will be used in the deployment processing process to determine the price of used cars with a ratio of 90:10, 80:20 and 70:30 producing the best estimated value is decision tree regression. Each method has a high level of accuracy including in the 90:10 ratio decision tree regression as the best method in the ratio has an accuracy level of 99%, and in the 80:20 ratio decision tree regression has an accuracy value of 99%, then the 70:30 ratio decision tree regression again becomes the best method with an accuracy level of 99%. Keyword: Machine Learning; Used Car Price Prediction; Regression; Performance Model Abstrak: Mobil merupakan sebuah alat transportasi kendaraan roda empat yang sangat populer saat ini, sehingga banyak sekali minat konsumen atau pembeli yang ingin membeli mobil baru maupun bekas tergantung dari ekonomi nya masing-masing Salah satu yang mempengaruhi minat konsumen dalam membeli mobil yaitu harga. Harga sangat berpengaruh dalam keberlangsungan konsumen dalam membeli suatu mobil Perlunya upaya estimasi untuk mengetahui perkiraan harga mobil bekas dengan berdasarkan kriteria seperti jarak tempuh, pajak, konsumsi bahan bakar, serta kapasitas mesin. Estimasi menggunakan metode regresi dimana dalam metode regresi terdapat 7 metode lagi meliputi (1) Linear Regression, (2) Support Vector Regression – Linear, (3) Support Vector Regression – RBF, (4) Decision Tree Regression, (5) Random Forest Regressor, (6) Gradient Boosting Regression, (7) NLP Regressor yang diterapkan dalam penelitian ini. Berdasarkan 7 metode regresi tersebut akan dicari 1 metode terbaik dengan nilai akurasi paling terbaik yang akan digunakan dalam proses pengolahan deploy untuk menentukan harga mobil bekas dengan rasio yaitu 90:10, 80:20 dan 70:30 menghasilkan nilai estimasi terbaik adalah decision tree regression. Masing – masing metode memiliki tingkat akurasi yang tinggi diantaranya dalam rasio 90:10 decision tree regression sebagai metode terbaik dalam rasio tersebut memiliki tingkat akurasi sebesar 99%, dan pada rasio 80:20 decision tree regression tersebut memiliki nilai akurasi sebesar 99%, selanjutnya rasio 70:30 decision tree regression kembali menjadi metode terbaik dengan tingkat akurasi sebesar 99%. Kata kunci: Machine Learning; Prediksi Harga Mobil Bekas; Regresi; Performance Model

Copyrights © 2025






Journal Info

Abbrev

JSSR

Publisher

Subject

Computer Science & IT Economics, Econometrics & Finance Education Social Sciences

Description

Journal of Science and Social Research is accepts research works from academicians in their respective expertise of studies. Journal of Science and Social Research is platform to disclose the research abilities and promote quality and excellence of young researchers and experienced thoughts towards ...