Digital data, especially visual content, faces significant security challenges due to its susceptibility to eavesdropping, manipulation, and theft in the modern digital landscape. One effective solution to address these issues is the use of encryption techniques, such as image encryption algorithms, that ensure the confidentiality, integrity, and authenticity of digital visual content. This study addresses these concerns by introducing an advanced image encryption method that combines Elliptic Curve Cryptography (ECC) with the 3D Lorenz chaotic system to enhance both security and efficiency. The method employs pixel permutation, ECC-based encryption, and diffusion using pseudo-random numbers generated by the Lorenz 3D system. The results show superior performance, with an MSE of 3032 and a PSNR of 8.87 dB, as well as UACI and NPCR values of 33.34% and 99.64%, respectively, indicating strong resilience to pixel intensity changes. During testing, the approach demonstrated robustness, allowing only the correct key to decrypt images accurately, while incorrect or modified keys led to distorted outputs, ensuring encryption reliability. Future work could explore extending the method to color images, optimizing processing for larger datasets, and incorporating additional chaotic systems to further fortify encryption strength.
Copyrights © 2025