Jurnal Informatika Progres
Vol 17 No 2 (2025): September

KLASIFIKASI PENYAKIT TANAMAN NILAM BERDASARKAN CITRA DAUN MENGGUNAKAN GLCM DAN SVM

Sarina (Unknown)
Bakti, Rizki Yusliana (Unknown)
Muhammad Faisal (Unknown)
Muhammad Syafaat (Unknown)
Syamsuri, Andi Makbul (Unknown)
AM Hayat, Muhyiddin (Unknown)
Anas, Andi Lukman (Unknown)



Article Info

Publish Date
01 Sep 2025

Abstract

This study presents a classification model for detecting diseases in patchouli (Pogostemon cablin Benth) leaves using image processing techniques. The method combines Grey Level Co-occurrence Matrix (GLCM) for texture feature extraction and Support Vector Machine (SVM) for classification, optimised using the Particle Swarm Optimisation (PSO) algorithm. A total of 2,080 leaf images were collected and categorized into four classes: healthy, leaf spot, yellowing, and mosaic. Each image was augmented and converted to grayscale to enhance the dataset and reduce computational complexity. Four GLCM features—contrast, correlation, energy, and homogeneity—were extracted to represent leaf textures. The classification model achieved an accuracy of 89.74% using SVM alone, and improved to 97.12% when optimized with PSO. The results indicate that the integration of GLCM, SVM, and PSO provides an effective and accurate solution for early detection of patchouli leaf diseases, potentially supporting farmers in decision-making and improving crop productivity and quality.

Copyrights © 2025






Journal Info

Abbrev

Progress

Publisher

Subject

Computer Science & IT

Description

Jurnal Informatika Progres merupakan jurnal Blind Peer-Review yang dikelola secara profesional dan diterbitkan oleh P3M STMIK Profesional Makassar dalam upaya membantu peneliti, akademisi, dan praktisi untuk mempublikasikan hasil penelitiannya. Jurnal ini didedikasikan untuk publikasi hasil ...