IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 14, No 5: October 2025

Optimized ensemble framework for predicting hydroponic stock and sales using machine learning

Pranatawijaya, Viktor Handrianus (Unknown)
Priskila, Ressa (Unknown)
Putra, Putu Bagus Adidyana Anugrah (Unknown)
Sari, Nova Noor Kamala (Unknown)
Christian, Efrans (Unknown)
Geges, Septian (Unknown)
Kristianti, Novera (Unknown)



Article Info

Publish Date
01 Oct 2025

Abstract

The increasing global demand for food necessitates the adoption of sustainable agricultural practices. Hydroponic farming, while efficient in resource utilization, faces challenges in accurately predicting stock levels and sales due to dynamic, ever-changing factors. This research presents an optimized ensemble framework for forecasting hydroponic stock levels and sales by integrating linear regression (LR), random forest (RF), and XGBoost, further enhanced through an evolutionary algorithm (EA). The proposed framework is evaluated using root mean square error (RMSE) and mean absolute error (MAE), demonstrating significant accuracy improvements over individual models. The ensemble model achieves an RMSE reduction of 43.82% for stock prediction and 55.3% for sales forecasting compared to the best-performing individual model. Additionally, local interpretable model-agnostic explanations (LIME) are employed to offer stakeholders clear insights into decision-making processes, such as identifying "number of harvested crops" and "sales data" as key drivers of prediction outcomes. This framework supports sustainable development goals (SDGs) 9.3, 12.3, and 12.C by promoting resource efficiency, reducing food waste, and improving small-scale farmer market access. Future research will explore real-time data integration for dynamic adaptation and further model enhancements.

Copyrights © 2025






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...