The palm oil industry is one of the strategic sectors that contributes significantly to the Indonesian economy. However, this industry still faces various challenges, particularly in terms of operational efficiency and the implementation of digitalization, especially at the level of independent farmers who often still use manual methods to determine the ripeness of the fruit. This manual process is prone to subjectivity, which can impact harvest quality and supply chain efficiency. To address this issue, this study proposes a palm oil fruit ripeness detection system based on the YOLOv11 algorithm, chosen for its advantages in inference speed and detection accuracy, especially when run on devices with limited resources. The developed model was then implemented using the ONNX Runtime Framework. This enables accelerated inference processes and supports portability on hardware with limited resources. Test results show that the model achieves an mAP@50 accuracy of 90.2% with an average latency of around 255 ms to 300 ms. With these achievements, this system is not only reliable in detecting fruit ripeness, but also efficient in processing time and relevant to support digital transformation in the palm oil plantation sector.
Copyrights © 2025