Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics
Vol. 5 No. 4 (2023): November

Digital Filter Design to Reduce Motion Artifacts in Electrocardiogram Signals Based on IIR Filter

Maghfiroh, Anita Miftahul (Unknown)
Setiawan, Singgih Yudha (Unknown)
Mujahid, Muhammad Umer Farooq (Unknown)



Article Info

Publish Date
17 Aug 2025

Abstract

Developed a new method to overcome motion artifacts in Electrocardiogram (ECG) signals, which often interfere with accurate clinical analysis. Motion artifacts, such as body movements, can cause significant distortions in the ECG signal, resulting in incorrect interpretation and affecting medical diagnosis. The main objective of this research is to design and implement an infinite impulse response (IIR) filter with a predetermined sequence, namely orders 2, 4, 6, and 8 to reduce motion artifacts in the ECG signal. We aim to improve ECG signal quality by preserving important ECG signal information and reducing noise caused by motion artifacts. This research contributes to developing more precise and reliable ECG signal processing techniques. The proposed method provides an effective approach to handling motion artifacts, enabling more accurate and reliable ECG interpretation by medical professionals. We used an ECG simulator that provides body movement simulation as a basis for experiments. The detected ECG signal is processed with a predetermined order IIR filter. We compare the filtered signal to the original signal to measure the effectiveness of reducing motion artifacts. Experimental results show that the applied IIR filter efficiently reduces motion artifacts in the ECG signal. The SNR assessment showed a significant improvement, proving the success of this method in maintaining ECG signal quality. The result is that in the 2nd order, the SNR value is 22.25 dB, in the 4th order the SNR value is 22.75 dB, in the 6th order the SNR value is 22.99 dB, in the 6th order the SNR value is 22.99 dB. 8 obtained an SNR value of 23dB. This study successfully demonstrated that using IIR filters in a specified order effectively reduces motion artifacts in the ECG signal, increases SNR, and maintains the integrity of clinical information in the ECG signal.

Copyrights © 2023






Journal Info

Abbrev

ijeeemi

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management Electrical & Electronics Engineering Health Professions Materials Science & Nanotechnology

Description

Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics (IJEEEMI) publishes peer-reviewed, original research and review articles in an open-access format. Accepted articles span the full extent of the Electronics, Biomedical, and Medical Informatics. IJEEEMI seeks to ...