Claim Missing Document
Check
Articles

Found 23 Documents
Search

Apnea Monitor Using Pulse Oxymetry with Tactile Stimulation to Reduce Respiration Failure Levana Forra Wakidi; I Dewa Hari Wisana; Anita Miftahul Maghfiroh; Vijay Kumar Sharma
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 2 (2021): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v3i2.3

Abstract

Respiratory failure (apnea) often occurs in premature babies, this should be avoided because it causes low oxygen concentrations in the blood so that it can damage brain function and lead to death. Apnea is characterized by a decrease in oxygen saturation (SpO2). The purpose of this study was to design an apnea monitor that was detected with SpO2 parameters, alarms, and vibrating stimulation. This study uses infrared and red LEDs that emit light through the surface of the finger and is detected by a photodiode sensor, this light signal will be converted into an electrical signal and calculated by Arduino to determine the patient's SpO2 and BPM values. If the SpO2 value drops 5% within 5 seconds from the baseline, the device will indicate apnea has occurred and the vibrating motor is working. SpO2 signals and alarms are sent to the nurse station computer via Bluetooth HC-05. The instrument was calibrated with an SpO2 calibrator and the measurement results were compared with a BION pulse oximetry brand. The results of the instrument measurement on two subjects on the SpO2 parameter showed an error value of 2% and the BPM parameter obtained an error value of 4.54%. Testing the BPM parameter using a calibrator at the 30 and 60 BPM settings shows an error value of 0% and at the 120 BPM setting the error value is 0.01%. The vibrating motor to stimulate the baby's body when apnea occurs is functioning properly. The results showed that measurements using subjects tended to have high error values ​​due to several factors. This research can be implemented on patient monitors to improve patient safety and reduce the workload of nurses or doctors
Development of Infusion Device Analyzer Equipped with Occlusion Detection and a Real-Time Parameters Monitoring on Computer System Anita Miftahul Maghfiroh; Nina Havilda; Sima Das
Jurnal Teknokes Vol 15 No 1 (2022): March
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/teknokes.v15i1.4

Abstract

Medical infusion device provides drugs or fluids directly through a blood vessel. However, the occurrence of occlusion in the infusion device causes the incoming drug fluid does not to flow constantly, and pressure is formed on the infusion tube. When an infusion device has been used for a long time, there will be a change in the precision of the flow and pressure values. Furthermore, a calibration process must be carried out at least once a year. This research aims to design an infusion device analyzer which able to show parameters in a graphic equipped with occlusion parameters and Bluetooth communication in real-time to the computer unit. This study uses a solenoid valve for pressure simulation. The allowable occlusion limit is <20 Psi. The SKU 237545 sensor detects the water pressure that is blocked by the solenoid valve. Then the data will be displayed on the Parallax data acquisitions using Bluetooth communication. The Parallax data acquisitions will display real-time occlusion data, data averages, instant values, and graphs. The results of the IDA design, when tested using the Syringe Pump TOP 5300, obtained an average of 0.68 Psi. Meanwhile, when the IDA design was tested using the Infusion Pump 3300, it brought 0.73 Psi. Furthermore, it showed that the occlusion parameter was compared with the Fluke IDA 4, a mean error was 0.7 Psi. Therefore, it can be concluded that this IDA design can be used for calibration to see the feasibility of an infusion pump or syringe pump.
Design an Infusion Device Analyzer with Flow Rate Parameters using Photodiode Sensor Andjar Pudji Pudji; Anita Miftahul Maghfiroh; Nuntachai Thongpance
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 2 (2021): May
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v3i2.1

Abstract

Infusion devices are the basis for primary health care, that is to provide medicine, nutrition, and hydration to patients. One of the infusion devices is a syringe pump and an infusion pump. This device is very important to assist the volume and flow that enters the patient's body, especially in situations related to neonatology or cancer treatment. Therefore, a comparison tool is needed to see whether the equipment is used or not. The purpose of this research is to make an infusion device analyzer (IDA) design with a flow rate parameter. The contribution of this research is that the tool can calculate the correct value of the flow rate that comes out of the infusion pump and syringe pump. The water released by the infusion pump or syringe pump will be converted into droplets which are then detected by the sensor. This tool uses an infrared sensor and a photodiode. The results obtained by the sensor will come by Arduino nano and code it to the 16x2 Character Liquid Crystal Display (LCD) and can be stored on an SD Card so that it can be analyzed further. In setting the flow rate for the syringe pump of 100 mL / hour, the error value is 3.9, 50 ml / hour 0.02, 20 mL / hour 0.378, 10 mL / hour 0.048, and 5 mL / hour 0.01. The results show that the average error of the syringe pump performance read by the module is 0.87. The results obtained from this study can be implemented for the calibration of the infusion pump and the syringe pump so that it can be determined whether the device is suitable or not
Infant Warmer with Digital Scales for Auto Adjustment PID Control Parameters Anita Miftahul Maghfiroh; Farid Amrinsani; Singgih Yudha Setiawan; Rafi Maulana Firmansyah; Shubhrojit Misra
Jurnal Teknokes Vol 15 No 2 (2022): June
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jteknokes.v15i2.246

Abstract

Babies need temperatures that match the temperature of the mother's womb, which is between 35°C – 37°C. The latest research on infant warmer device used fuzzy method as a system for controlling temperature in infant warmers. The problem raised in the previous research is that the temperature was not evenly distributed throughout the bed at each predetermined temperature setting. When it reached the setting temperature, the warmer continued to turn on so that the bed got hotter. Therefore, the purpose of the current research is to make an infant warmer device equipped with digital scales with a temperature setting of 350C- 370C using PID control to stabilize the temperature and ensure that the heat is evenly distributed on the bed. In addition, skin temperature is also added, allowing the nurses know at which level of patient's body temperature is when observations should be made. The infant warmer in this module used an arduino microcontroller which is displayed in 7 segments, the skin sensor used is the DS18B20 temperature sensor to read the skin temperature, while the infant warmer temperature sensor used is LM35 as a PID control system. The results of the current research in making the device module were compared with the measurement results of the comparator. It was revealed that current research has obtained smallest error of 0% in temperature setting of 350C. For the comparison with the incu analyzer, the smallest error was obtained at the temperature setting of 370C with an error value of 0% on the T5 measurement. Meanwhile, the difference in skin temperature against the thermometer is 0.10C. The results showed that the temperature distributed on the module had different error values. Hence, this research can be implemented on the PID control of infant warmer system to improve the performance of infant temperature stability.
Improved Heart Rate Measurement Accuracy by Reducing Artifact Noise from Finger Sensors Using Digital Filters Anita Miftahul Maghfiroh; Liliek Soetjiatie; Bambang Guruh Irianto; Triwiyanto Triwiyanto; Achmad Rizal; Nuril Hidayanti
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 2 (2022): May
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i2.4

Abstract

Heart rate is an important indicator in the health sector that can be used as an effective and rapid evaluation to determine the health status of the body. Motion or noise artifacts, power line interference, low amplitude PPG, and signal noise are all issues that might arise when measuring heart rate. This study aims to develop a digital filter that reduces noise artifacts on the finger sensor to improve heart rate measurement accuracy. Adaptive LMS and Butterworth are the two types of digital filters used in this research. In this study, data were collected from the patient while he or she was calm and moving around. In this research, the Nellcor finger sensor was employed to assess the blood flow in the fingers. The heart rate sensor will detect any changes in heart rate, and the measurement results will be presented on a personal computer (PC) as signals and heart rate values. The results of this investigation showed that utilizing an adaptive LMS filter and a Butterworth low pass filter with a cut-off frequency of 6Hz, order 4, and a sampling frequency of 1000Hz, with the Butterworth filter producing the least error value of 7.57 and adaptive LMS maximum error value of 27.65 as predicted by the researcher to eliminate noise artifacts. This research could be applied to other healthcare equipment systems that are being monitored to increase patient measurement accuracy.
Nine Channel Data Logger to Measure Temperature Distribution on Dry Stelizer based on Andoid system Anita Miftahul Maghfiroh; Singgih Yudha Setiawan; Bayu Trisono Aji Pambudi; Steyve Nyatte
Jurnal Teknokes Vol 15 No 3 (2022): September
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/teknokes.v15i3.306

Abstract

A temperature measurement in sterilization is needed to find out whether the temperature setting has been reached, because if the tool is operated continuously it will have an impact on the performance of the tool. Data logger is a tool used to record time and temperature by recording. The purpose of this research is to develop technological advances with remote or automated systems that can monitor changes in temperature rise and fall. This study uses 9 types of K-type thermocouple sensors as temperature gauges which are placed at 9 specified points. A thermocouple is connected to the MAX6675 module for conversion which initially detects temperature into digital form data. Data processing uses the Arduino Mega 2560 system and the Arduino programming software processor. HC-05 is used as a data transmission of measured results that have been read where the results are displayed on Android using the Blynk application, the data sent will be in the form of Excel. This tool uses a temperature comparison from the MEMMERT UN 55 incubator in the microbiology laboratory. The error value contained in the 100°C temperature adjustment is 2.6% at a temperature of 1, the smallest error at temperatures 7 and 8 is 0.2% due to the location of the sensor far from the heater. The error value at a temperature of 150°C is 1.7%, the smallest error at temperature 5 is 0.3%, 0.5%. The error value at a temperature of 200°C is 1.8%, the smallest error at temperature 0.5%. This research is expected to make it easier for users to simultaneously monitor temperature and simplify data processing to obtain an accuracy error value in the unit under test (UUT).
Performance Comparison of ECG Bio-Amplifier Between Single and Bi-Polar Supply Using Spectrum Analysis Based on Fast Fourier Transform Anita Miftahul Maghfiroh; Syevana Dita Musvika; Vugar Abdullayev
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): November
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i4.248

Abstract

Heart performance is one of the vital signs that cannot be ignored and must be monitored periodically. In this case, the measuring range of the human heart rate is between 60-100 BPM, in which the measurement unit is expressed as Beat per Minute (BPM). Therefore, it is very important to use Electrocardiograph equipment to tap the electrical signals of the heart with correct readings and minimal interference such as frequency of electric lines and noise. The purpose of this study was to compare the instrumentation amplifier using a single supply with a bi-polar supply in the ECG design to select the best instrumentation amplifier, which is expected to contribute to other researchers in choosing the right type of instrumentation amplifier that is efficient and qualified. In this case, the research was carried out by comparing two single supply instrumentation amplifiers using the AD623 IC and the bi-polar supply using the AD620 IC, continued by the use of Fast Fourier Transform (FFT) to determine the frequency spectrum of the ECG signal. The test results further showed that the use of single power instrumentation could reduce more noise compared to the Bi-Polar instrumentation amplifier by strengthening 60 dB Low pass filter circuit. Meanwhile, the FFT results in finding the frequency spectrum explained that the FFT results on the ECG signal provided information that the ECG signal had a frequency range between 0.05 Hz and 100 Hz. When the frequency is more than 100 Hz, the frequency started to be suppressed and when the frequency is less than 100 Hz, the frequency is passed. This research could be further used as a reference by other researchers to determine which type of instrumentation amplifier is better.
Analysis of Temperature Distribution in Blood Banks Through Storage of Measurement Results with IoT Monitoring in the Blood Donor Unit of PMI Surabaya Farisy Azis Satria Wardhana; Anita Miftahul Maghfiroh; Dyah Titisari; Sumber Sumber; Vugar Abdullayev
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 2 (2023): May
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v5i2.278

Abstract

Temperature or temperature is an indicator of the degree of heat of an object. Cold chain or cold chain is a supply chain system that considers the temperature level in the process. Cold chain to keep frozen or chilled products in an environment with a certain temperature during production, storage, transportation, processing and sales. This is intended to maintain product quality. The purpose of this study was to determine the temperature distribution in the Blood bank at UDD PMI Surabaya City which was used for storage of blood products. By using the ESP32 system and the DS18B20 temperature sensor which will then be monitored via IoT, it will make it easier for users to monitor. The results of these measurements will be stored in a micro SD card for analysis. The data is processed by Non-Parametric Test resulting in an interpretation that the temperature of each shelf is different due to the difference in the location of the sensor placement. The temperature difference is also influenced by the pattern of use and the process of heat transfer from the bottom to the top of the shelf. This research was considered successful with the result of the highest temperature distribution being 3°C and the lowest being 2°C. The location of these racks can be useful in determining day-to-day monitoring measuring points. This value has met the standard for storage of blood products, which is in the range of 2°C-6°C.
Design of Single Lead Electrocardiography using Filter Order 3 to Reduce Noise Using Spektrum Analysis Based on Fast Fourier Transform Maghfiroh, Anita Miftahul; Yudha Setiawan, Singgih; Wakidi, Levana Forra
International Journal of Advanced Health Science and Technology Vol. 3 No. 3 (2023): June
Publisher : Forum Ilmiah Teknologi dan Ilmu Kesehatan (FORITIKES)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijahst.v3i3.227

Abstract

Electrocardiography (EKG) is a method commonly used to measure the performance of the human heart through the heart's electrical activity. To obtain the ECG signal, a lead is carried out using electrodes attached to the skin surface which are recorded in the frequency range 0.05-150Hz. The characteristics of the ECG signal consist of the PR interval, QRS complex and QT interval, from these waveforms doctors can diagnose a disease. However, to get a quality ECG signal, there are often disturbances, such as interference with the 50Hz frequency from electrical grids, respiratory movements, or it could also be caused by the ECG processing algorithm, so it is feared that an error will occur in the diagnosis. From these problems, an appropriate ECG filter is needed to reduce the error rate in generating a wave and maintain signal quality so that it can be accepted clinically. This study aims to design an ECG using a 3rd order filter. The ECG input signal is amplified by an instrument amplifier with 100-fold gain, then a filter process is carried out using a 3rd order Low pass filter to reduce noise interference and then a notch filter is used to ward off the 50Hz network frequency. The results of making a 3rd order filter are able to reduce noise and be able to detect ECG signals properly. It is hoped that this research can be used as a reference for filter design for EKG production and can be utilized in clinical use.
Sensor Pengukur Kecepatan Putaran Motor Berbasis Mikrokontroller AT-Mega 8535 Susilo, Dody; Maghfiroh, Anita Miftahul
ELECTRA : Electrical Engineering Articles Vol. 3 No. 1 (2022)
Publisher : UNIVERSITAS PGRI MADIUN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/electra.v3i01.13983

Abstract

Sensor pengukuran kecepatan putaran motor adalah alat yang digunakan di sebagian besar mesin-mesin industri yang bekerja berdasarkan perputaran motor untuk memonitoring kecepatan motor tersebut. Dimana salah satu sensor yang digunakan dalam pengukuran kecepatan motor adalah sensor optocoupler. Informasi tentang laju perputaran motor diperlukan oleh seorang operator untuk mengontrol dan mengatur laju putaran motor sesuai dengan yang diharapkan. Pada proyek akhir ini digunakan optocoupler sebagai sensor pengukur kecepatan putaran motor dan potensiometer digunakan sebagai pengontrol kecepatan motor. Dari pengontrolan dan pembacaan pulsa optocoupler data diolah di mikrokontroler setelah itu data dikirim dan ditampilkan di LCD dalam satuan RPM (Rotation Per Minute). Dari hasil pengujian yang telah dilakukan Tingkat keakurasian hasil pembacaan didapatkan dalam kondisi hampir mendekati kecepatan maksimum dan pada saat kecepatan maksimum. Dimana pada motor 1 kecepatan putaran maksimalnya 250 RPM dimana error yang didapat 4 % serta dan motor 2 kecepatan maksimalnya 180 RPM dimana error yang didapat 2,97 %.