SEMINAR TEKNOLOGI MAJALENGKA (STIMA)
Vol 8 (2024): STIMA 8.0 : Menuju Kesinambungan : Inovasi dan Adaptasi Teknologi untuk Pembangunan Be

ANALISIS SISTEM REKOMENDASI MUSIK BERDASARKAN LIRIK DENGAN METODE TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY

Muhyidin, Muhammad Sahel (Unknown)
Hariyanti, IFani (Unknown)
Novianto, Muhammad Fahmi (Unknown)
Apriliani, Anna Alifia (Unknown)
Rohmah, Sophia Nur (Unknown)



Article Info

Publish Date
01 Oct 2024

Abstract

This study develops and evaluates a music recommendation system using content-based filtering, focusing on lyrical analysis. Utilizing Term Frequency-Inverse Document Frequency (TF-IDF) and cosine similarity metrics, the system analyzes a dataset of 6,049 songs to identify thematically related music based on lyrical content. The methodology involves data preprocessing, feature extraction, and the application of a content-based filtering algorithm to compare song attributes. Results indicate the system's ability to generate relevant recommendations, potentially enhancing user experience in music discovery. This research contributes to the field of personalized content delivery systems, offering insights into the effectiveness of lyric-based music recommendation algorithms

Copyrights © 2024






Journal Info

Abbrev

stima

Publisher

Subject

Computer Science & IT Control & Systems Engineering Industrial & Manufacturing Engineering Mechanical Engineering Transportation

Description

Prosiding SEMINAR TEKNOLOGI MAJALENGKA (STIMA) adalah publikasi ilmiah yang memuat hasil-hasil penelitian orisinal dan terkini dari para akademisi, peneliti, dan praktisi di berbagai bidang teknik dan manajemen. Prosiding ini memiliki sifat multidisiplin, berfokus pada integrasi ilmu pengetahuan ...