Handwritten digit recognition presents persistent challenges in computer vision due to the high variability in human handwriting styles, which necessitates robust generalization in classification models. This study proposes an advanced data augmentation strategy using Cycle-Consistent Generative Adversarial Networks (CycleGAN) to improve recognition accuracy on the MNIST dataset. Two architectures are evaluated: a standard Convolutional Neural Network (CNN) and a hybrid model combining CNN for spatial feature extraction and Bidirectional Long Short-Term Memory (BiLSTM) for sequential pattern modeling. The CycleGAN-based augmentation generates realistic synthetic images that enrich the training data distribution. Experimental results demonstrate that both models benefit from the augmentation, with the CNN-BiLSTM model achieving the highest accuracy of 99.22%, outperforming the CNN model’s 99.01%. The study’s novelty lies in the integration of CycleGAN-generated data with a CNN–BiLSTM architecture, which has been rarely explored in previous works. These findings contribute to the development of more generalized and accurate deep learning models for handwritten digit classification and similar pattern recognition tasks.
Copyrights © 2025