Abstrak - Mobilitas perkotaan modern bergantung pada layanan transportasi online. Optimasi ukuran armada dan algoritma penugasan sangat penting untuk kinerja sistem ini; namun, penelitian empiris tentang perbedaan antara kedua komponen tersebut masih sedikit. Studi ini menggunakan simulasi komputer untuk melihat bagaimana interaksi antara ukuran armada dan algoritma penugasan berdampak pada waktu tunggu pelanggan. Studi ini menguji 24 skenario yang menggabungkan 8 ukuran armada (3–30 driver) dan 3 algoritma penugasan (paling dekat, pengaturan acak, dan berbasis queue). Algoritma driver paling dekat mengurangi waktu tunggu rata-rata sebesar 41,6 persen dibandingkan dengan random assignment, dan setiap simulasi dijalankan selama 150 langkah waktu. Dengan service rate 100%, armada 25 driver mencapai zero waiting time. Studi ini menunjukkan bukti nyata bahwa kinerja sistem transportasi online dapat secara signifikan ditingkatkan dengan mengoptimalkan kombinasi armada dan algoritma. Untuk mencapai tingkat efisiensi operasional terbaik, disarankan untuk menggunakan algoritma driver terdekat dengan armada 20 hingga 25 driver.Kata kunci: Transportasi Daring; Optimasi Armada; Algoritma Penugasan; Waktu Tunggu; Simulasi Agent-based; Abstract - Modern urban mobility depends on online transportation services. Optimizing fleet size and assignment algorithms is critical to the performance of these systems; however, empirical research on the differences between these two components is still scarce. This study uses computer simulations to examine how the interaction between fleet size and assignment algorithms affects customer wait times. The study tested 24 scenarios combining 8 fleet sizes (3–30 drivers) and 3 assignment algorithms (nearest driver, random assignment, and queue-based). The nearest driver algorithm reduced average waiting time by 41.6 percent compared to random assignment, and each simulation ran for 150 time steps. With a service rate of 100%, a fleet of 25 drivers achieved zero waiting time. This study provides clear evidence that the performance of online transportation systems can be significantly improved by optimizing the combination of fleet size and algorithm. To achieve the highest level of operational efficiency, it is recommended to use the nearest driver algorithm with a fleet size of 20 to 25 drivers.Keywords: Online Transportation; Fleet Optimization; Assignment Algorithm; Waiting Time; Agent-based Simulation;
Copyrights © 2025