Deteksi penyakit pada daun mangga merupakan tantangan penting dalam sektor pertanian Indonesia karena memengaruhi kualitas dan kuantitas hasil panen. Penelitian ini mengembangkan sistem klasifikasi citra penyakit daun mangga menggunakan arsitektur CNN VGG16 dan Xception. Dataset terdiri dari dua dataset berbeda yang pertama terdiri dari dua kelas yaitu kelas sehat dan sakit, dataset kedua memiliki tiga kelas yaitu Jamur Jelangga, Klorosis, dan Sehat. Teknik augmentasi data dan optimizer Adam digunakan untuk meningkatkan performa model. Evaluasi dilakukan dengan Confusion Matrix serta metrik presisi, recall, dan F1-score. Hasil menunjukkan bahwa VGG16 konsisten memberikan performa terbaik, dengan akurasi hingga 100% pada skenario dua kelas, dan 99% pada skenario tiga kelas. Arsitektur CNN, khususnya VGG16, terbukti efektif dan konsisten dalam mengklasifikasikan penyakit daun mangga berbasis citra digital.
Copyrights © 2025