Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi)
Vol. 9 No. 3 (2025): Prosiding Seminar Nasional Inovasi Teknologi Tahun 2025

Deteksi Penyakit Daun Mangga Menggunakan Convolutional Neural Network Untuk Analisis Komperasi Arsitektur VGG16, Xception

Ardiansyah, Ryo (Unknown)
Widyadara, Made Ayu Dusea (Unknown)
Mahdiyah, Umi (Unknown)



Article Info

Publish Date
10 Jul 2025

Abstract

Deteksi penyakit pada daun mangga merupakan tantangan penting dalam sektor pertanian Indonesia karena memengaruhi kualitas dan kuantitas hasil panen. Penelitian ini mengembangkan sistem klasifikasi citra penyakit daun mangga menggunakan arsitektur CNN VGG16 dan Xception. Dataset terdiri dari dua dataset berbeda yang pertama terdiri dari dua kelas yaitu kelas sehat dan sakit, dataset kedua memiliki tiga kelas yaitu Jamur Jelangga, Klorosis, dan Sehat. Teknik augmentasi data dan optimizer Adam digunakan untuk meningkatkan performa model. Evaluasi dilakukan dengan Confusion Matrix serta metrik presisi, recall, dan F1-score. Hasil menunjukkan bahwa VGG16 konsisten memberikan performa terbaik, dengan akurasi hingga 100% pada skenario dua kelas, dan 99% pada skenario tiga kelas. Arsitektur CNN, khususnya VGG16, terbukti efektif dan konsisten dalam mengklasifikasikan penyakit daun mangga berbasis citra digital.

Copyrights © 2025






Journal Info

Abbrev

inotek

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management Electrical & Electronics Engineering Energy Engineering Industrial & Manufacturing Engineering Mathematics Mechanical Engineering Transportation

Description

Teknologi saat berkembang sangat cepat selama beberapa tahun terakir ini. Perkembangan teknologi tersebut merupakan salah satu dampak dari peningkatan inovasi dalam bidang teknologi. Ide-ide dan produk baru selalu ada untuk membantu kemingkatkan kualitas kehidpan manusia. Dalam rangka mendukung ...