Indonesian Journal of Data and Science
Vol. 6 No. 3 (2025): Indonesian Journal of Data and Science

Comparison of Naïve Bayes and Random Forest in Sentiment Analysis of State-Owned Banks Management by Danantara on X and YouTubeComparison of Naïve Bayes and Random Forest in Sentiment Analysis of State-Owned Banks Management by Danantara on X and YouTube

Ni Wayan Indah Juliandewi (Unknown)
Kusuma, Aniek Suryanti (Unknown)
Putri, Kompiang Martina Dinata (Unknown)
Indrawan, I Gusti Agung (Unknown)
Aristamy, I Gusti Ayu Agung Mas (Unknown)



Article Info

Publish Date
31 Dec 2025

Abstract

The advancement of digital technology has increased public engagement in expressing opinions and responding to issues on social media platforms such as X and YouTube. A prominent topic of recent public debate concerns Danantara's management of state-owned banks. This study analyzes public sentiment regarding this issue by comparing the performance of the Naïve Bayes and Random Forest classification methods. A dataset comprising 25,565 entries was collected from both platforms between January 2025 and May 2025. The data underwent text pre-processing, labeling with the InSet Lexicon, and feature weighting using term frequency-inverse document frequency (TF-IDF). The dataset was split at 80:20, and class imbalance was addressed using the Synthetic Minority Over-sampling Technique (SMOTE) prior to classification. Model performance was evaluated using accuracy, precision, recall, and F1-score metrics. The results demonstrate that Random Forest performed stably, achieving 84% accuracy both before and after sampling. In contrast, Naïve Bayes achieved 74% accuracy before sampling, which increased to 79% after sampling. These findings suggest that Random Forest is more robust to data imbalance than Naïve Bayes, which is more susceptible to bias toward the majority class.

Copyrights © 2025






Journal Info

Abbrev

ijodas

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Mathematics

Description

IJODAS provides online media to publish scientific articles from research in the field of Data Science, Data Mining, Data Communication, Data Security and Data ...