Penentuan nilai pasar properti yang akurat merupakan tantangan signifikan bagi pelaku ekonomi karena dipengaruhi oleh berbagai faktor infrastruktur dan letak geografis. Penelitian ini bertujuan untuk membangun model yang mampu memprediksi harga unit properti di Distrik Sindian, New Taipei City, menggunakan teknik Data Mining dengan algoritma Linear Regression. Data yang digunakan berasal dari UCI Machine Learning Repository yang mencakup 414 catatan transaksi dengan 6 variabel independen, yaitu usia bangunan, jarak ke stasiun MRT, jumlah toko ritel, serta koordinat lokasi (latitude dan longitude). Penelitian ini dilakukan menggunakan perangkat lunak RapidMiner Studio dengan metode evaluasi korelasi dan error metric. Hasil penelitian menunjukkan bahwa algoritma Linear Regression mampu memprediksi harga properti secara efektif dengan tingkat akurasi yang diukur melalui Root Mean Squared Error (RMSE). Berdasarkan analisis koefisien, variabel jarak ke stasiun MRT memiliki pengaruh negatif paling signifikan, yang berarti semakin dekat lokasi properti dengan akses transportasi publik, maka harga unit properti akan meningkat secara drastis. Penelitian ini membuktikan bahwa faktor aksesibilitas merupakan penentu utama nilai real estat, sehingga model ini dapat digunakan sebagai Sistem Pendukung Keputusan (Decision Support System) bagi tenaga profesional di bidang properti.
Copyrights © 2025