Penggunaan kredit telah menjadi fenomena yang meluas di masyarakat, namun di balik popularitasnya terdapat risiko signifikan berupa peningkatan kredit macet. Masalah ini sering kali berakar pada histori pengelolaan keuangan yang buruk, di mana kegagalan nasabah untuk memenuhi kewajiban pembayaran utang secara langsung meningkatkan risiko kredit bagi lembaga pemberi pinjaman. Untuk mengatasi tantangan ini, penelitian ini mengimplementasikan dan membandingkan dua model klasifikasi untuk menilai kelayakan kredit yaitu algoritma Decision Tree C4.5 dan C4.5 yang dioptimasi dengan teknik seleksi fitur Backward Elimination. Menggunakan dataset 481 catatan kredit kendaraan yang diklasifikasikan sebagai "baik" dan "buruk", model ini dikembangkan dengan sebelas variabel independen, termasuk status tanggungan, usia, pendidikan, pekerjaan, pendapatan, dan uang muka. Hasil pengujian menunjukkan bahwa model C4.5 tanpa optimasi mencapai akurasi sebesar 91,90% dengan nilai Area Under Curve (AUC) 0,915. Sebaliknya, model yang mengintegrasikan Backward Elimination menunjukkan peningkatan kinerja yang signifikan, dengan akurasi mencapai 94,80% dan AUC sebesar 0,973. Temuan ini mengkonfirmasi bahwa penerapan optimasi Backward Elimination secara efektif meningkatkan kemampuan prediktif model klasifikasi kelayakan kredit.
Copyrights © 2026