Indonesian Journal of Chemistry
Vol 19, No 1 (2019)

Optimization Method for Bioethanol Production from Giant Cassava (Manihot esculenta var. Gajah) Originated from East Kalimantan

Krishna Purnawan Candra (Department of Agricultural Product Technology, Faculty of Agriculture, Mulawarman University, Jl. Tanah Grogot, Kampus Gunung Kelua, Samarinda 75119, East Kalimantan, Indonesia)
Kasma Kasma (Department of Agricultural Product Technology, Faculty of Agriculture, Mulawarman University, Jl. Tanah Grogot, Kampus Gunung Kelua, Samarinda 75119, East Kalimantan, Indonesia)
Ismail Ismail (Department of Agricultural Product Technology, Faculty of Agriculture, Mulawarman University, Jl. Tanah Grogot, Kampus Gunung Kelua, Samarinda 75119, East Kalimantan, Indonesia)
Marwati Marwati (Department of Agricultural Product Technology, Faculty of Agriculture, Mulawarman University, Jl. Tanah Grogot, Kampus Gunung Kelua, Samarinda 75119, East Kalimantan, Indonesia)
Wiwit Murdianto (Department of Agricultural Product Technology, Faculty of Agriculture, Mulawarman University, Jl. Tanah Grogot, Kampus Gunung Kelua, Samarinda 75119, East Kalimantan, Indonesia)
Yuliani Yuliani (Department of Agricultural Product Technology, Faculty of Agriculture, Mulawarman University, Jl. Tanah Grogot, Kampus Gunung Kelua, Samarinda 75119, East Kalimantan, Indonesia)



Article Info

Publish Date
29 Jan 2019

Abstract

Here is the first report of bioethanol production from giant cassava, a variety of cassava originated from East Kalimantan. Hydrolysis on freshly grated cassava with two different acids was studied separately. The experiment was conducted as a single factor experiment in Completely Randomized Design (CRD) with five treatments (0.0–1.0 M of acid solution), each replicated three times. Reducing sugars, unhydrolyzed substance (fibers), and hydrolysate clarity was determined. The experiment was continued by studying fermentation condition using factorial experiment (2 x 4) in CRD. The first factor was starter concentration (Saccharomyces cerevisiae, 5 and 10%) and the second factor was fermentation time (2–11 days). Biomass and alcohol content in fermentate were determined. The data were analyzed by ANOVA, excluding alcohol content that analyzed by the non-parametric statistic. Optimization using regression analysis showed that hydrolysis by HCl was more effective than H2SO4. Hydrolysis solution of 0.58 M HCl gave an optimum reducing sugar in hydrolysate (5.6%), which equivalent to a yield of 28.18%. Starter concentration affected significantly on biomass and alcohol content (p < 0.001) of fermentate, while fermentation time affected significantly only on alcohol content (p < 0.001). Optimum condition of cassava hydrolysate fermentation (100 mL) was using 5% yeast for 8 days, which gave a yield of 14.17% bioethanol.

Copyrights © 2019






Journal Info

Abbrev

ijc

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Chemistry

Description

Indonesian Journal of Chemistry is an International, peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry including applied chemistry. The journal is accredited by The Ministry of Research, Technology ...