cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
jtsiskom@ce.undip.ac.id
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Teknologi dan Sistem Komputer
Published by Universitas Diponegoro
ISSN : 26204002     EISSN : 23380403     DOI : -
Jurnal Teknologi dan Sistem Komputer (JTSiskom, e-ISSN: 2338-0403) adalah terbitan berkala online nasional yang diterbitkan oleh Departemen Teknik Sistem Komputer, Universitas Diponegoro, Indonesia. JTSiskom menyediakan media untuk mendiseminasikan hasil-hasil penelitian, pengembangan dan penerapannya di bidang teknologi dan sistem komputer, meliputi sistem embedded, robotika, rekayasa perangkat lunak dan jaringan komputer. Lihat fokus dan ruang lingkup JTSiskom. JTSiskom terbit 4 (empat) nomor dalam satu tahun, yaitu bulan Januari, April, Juli dan Oktober (lihat Tanggal Penting). Artikel yang dikirimkan ke jurnal ini akan ditelaah setidaknya oleh 2 (dua) orang reviewer. Pengecekan plagiasi artikel dilakukan dengan Google Scholar dan Turnitin. Artikel yang telah dinyatakan diterima akan diterbitkan dalam nomor In-Press sebelum nomor regular terbit. JTSiskom telah terindeks DOAJ, BASE, Google Scholar dan OneSearch.id Perpusnas. Lihat daftar pengindeks. Artikel yang dikirimkan harus sesuai dengan Petunjuk Penulisan JTSiskom. JTSiskom menganjurkan Penulis menggunakan aplikasi manajemen referensi, seperti Mendeley, Endnote atau lainnya. Penulis harus register ke jurnal atau jika telah teregister, dapat langsung log in dan melakukan lima langkah submisi artikel. Penulis harus mengupload Pernyataan Pengalihan Hak Cipta saat submisi. Artikel yang terbit di JTSiskom akan diberikan nomer identifier unik (DOI/Digital Object Identifier) dan tersedia serta bebas diunduh dari portal JTSiskom ini. Penulis tidak dipungut biaya baik untuk pengiriman artikel maupun pemrosesan artikel (lihat APC/Article Processing Charge). Jurnal ini mengimplementasikan sistem LOCKSS untuk pengarsipan secara terdistribusi di jaringan LOCKSS privat.
Arjuna Subject : -
Articles 11 Documents
Search results for , issue "Volume 8, Issue 4, Year 2020 (October 2020)" : 11 Documents clear
Comparative analysis of classification algorithms for critical land prediction in agricultural cultivation areas Deden Istiawan
Jurnal Teknologi dan Sistem Komputer Volume 8, Issue 4, Year 2020 (October 2020)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2020.13668

Abstract

Currently, the identification of critical land, that has been physically, chemically, and biologically damaged, uses a geographic information system. However, it requires a high cost to get the high resolution of satellite images. In this study, a comparison framework is proposed to determine the performance of the classification algorithms, namely C.45, ID3, Random Forest, k-Nearest Neighbor, and Naïve Bayes. This research aims to find out the best algorithm for the classification of critical land in agricultural cultivation areas. The results show that the highest accuracy Random Forest algorithm was 93.10 % in predicting critical land, and the naïve Bayes has the lowest performance, with 89.32 % of accuracy in predicting critical land.
Kombinasi metode NER-OCR untuk meningkatkan efisiensi pengambilan informasi di poster berbahasa Indonesia Ahmad Syarif Rosidy; Tubagus Mohammad Akhriza; Mochammad Husni
Jurnal Teknologi dan Sistem Komputer Volume 8, Issue 4, Year 2020 (October 2020)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (43.132 KB) | DOI: 10.14710/jtsiskom.2020.13686

Abstract

Penyelenggara acara di Indonesia seringkali menggunakan situs web untuk menyebarkan informasi tentang acara tersebut melalui poster digital. Namun, proses mentransfer informasi dari poster ke situs web secara manual terkendala oleh efisiensi waktu, mengingat makin banyaknya poster yang diunggah. Di sisi lain, metode pengambilan informasi berbasis teknologi informasi, seperti Named Entity Recognition (NER), untuk poster berbahasa Indonesia masih jarang dibahas di literatur, sedangkan penerapan NER terhadap korpus berbahasa Indonesia ditantang dalam peningkatan akurasi karena bahasa Indonesia adalah bahasa dengan sumber daya rendah yang menyebabkan minimnya ketersediaan korpus sebagai referensi. Artikel ini mengusulkan solusi untuk meningkatkan efisiensi waktu ekstraksi informasi dari poster digital. Solusi yang diusulkan merupakan kombinasi antara metode NER dengan Optical Character Recognition (OCR) untuk mengenali teks di poster yang dikembangkan dengan dukungan korpus data latih yang relevan untuk meningkatkan akurasi. Hasil percobaan menunjukkan bahwa sistem mampu meningkatkan efisiensi waktu sebesar 94 % dengan akurasi 82-92 % untuk beberapa entitas informasi yang diekstraksi untuk 50 poster digital uji.
Prediksi konsumsi beras menggunakan metode regresi linear pada sistem kotak beras cerdas Mulia Hanif; Maman Abdurohman; Aji Gautama Putrada
Jurnal Teknologi dan Sistem Komputer Volume 8, Issue 4, Year 2020 (October 2020)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2020.13353

Abstract

Currently, the smart rice box has applied the Internet of Things (IoT) but without prediction of rice runs out which shows the amount of rice consumption. This study applies linear regression to predict the rice runs out in an IoT-based smart rice box and analyzes its performance. The prediction used the dataset obtained by measuring a smart rice box equipped with a load cell weight sensor and Hx711 module. The weight sensor accuracy was an RMSE of between 56 and 170 grams. The linear regression method applied to the smart rice box to predict rice running out has an MSE value of 0.2588 with a prediction window of 43 days. An R-squared value of less than one is obtained with a predictive threshold of 24 days.
Sistem pemantauan tanah longsor berdasarkan laju adsorpsi air pada tanah menggunakan sensor kelembapan, kemiringan, dan suhu Faisal Budiman; Erwin Susanto; Doan Perdana; Husneni Mukhtar; Yulius Anggoro Pamungkas; Yakobus Yulyanto Kevin
Jurnal Teknologi dan Sistem Komputer Volume 8, Issue 4, Year 2020 (October 2020)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2020.13591

Abstract

This study examines the application of a landslide disaster monitoring system based on soil activity information that utilizes humidity, temperature, and accelerometer sensors. An artificial highland was built as the research object, and the landslide process was triggered by supplying the system with continuous artificial rainfall. The soil activities were observed through its slope movement, temperature, and moisture content, utilizing an accelerometer, temperature, and humidity sensors both in dry and wet conditions. The system could well observe the soil activities, and the obtained data could be accessed in real-time and online mode on a website. The time delay in sending the data to the server was 2 seconds. Moreover, the characteristics of soil porosity and its relevance to soil saturation level due to water pressure were studied as well. Kinetic study showed that the water adsorption to soil followed the intraparticle diffusion model with a coefficient of determination R2 0.99043. The system prototype should be used to build the information center of disaster mitigation, particularly in Indonesia.
A proposed method for handling an imbalance data in classification of blood type based on Myers-Briggs type indicator Ahmad Taufiq Akbar; Rochmat Husaini; Bagus Muhammad Akbar; Shoffan Saifullah
Jurnal Teknologi dan Sistem Komputer Volume 8, Issue 4, Year 2020 (October 2020)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2020.13625

Abstract

Blood type still leads to an assumption about its relation to some personality aspects. This study observes preprocessing methods for improving the classification accuracy of MBTI data to determine blood type. The training and testing data use 250 data from the MBTI questionnaire answers given by 250 respondents. The classification uses the k-Nearest Neighbor (k-NN) algorithm. Without preprocessing, k-NN results in about 32 % accuracy, so it needs some preprocessing to handle data imbalance before the classification. The proposed preprocessing consists of two-stage, the first stage is the unsupervised resample, and the second is the supervised resample. For the validation, it uses ten cross-validations. The result of k-Nearest Neighbor classification after using these proposed preprocessing stages has finally increased the accuracy, F-score, and recall significantly.
Rekonstruksi citra kendaraan menggunakan SRCNN untuk peningkatan akurasi pengenalan pelat nomor kendaraan Windra Swastika; Ekky Rino Fajar Sakti; Mochamad Subianto
Jurnal Teknologi dan Sistem Komputer Volume 8, Issue 4, Year 2020 (October 2020)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2020.13726

Abstract

Citra resolusi rendah dapat direkonstruksi menjadi citra resolusi tinggi dengan menggunakan algoritma Super-resolution Convolution Neural Network (SRCNN). Penelitian ini bertujuan untuk menjawab pertanyaan apakah citra resolusi tinggi yang dihasilkan melalui algoritme SRCNN dapat meningkatkan akurasi pengenalan pelat nomor kendaraan. Pengenalan pelat nomor kendaraan dilakukan dengan 2 jenis metode pengenalan karakter yaitu Tesseract OCR dan SPNet. Data latih untuk SRCNN menggunakan dataset DIV2K yang terdiri dari 900 citra, sedangkan data latih untuk pengenalan karakter menggunakan dataset Chars74. Hasil yang didapatkan adalah bahwa peningkatan resolusi citra menggunakan SRCNN dapat meningkatkan rata-rata akurasi pengenalan pelat nomor kendaraan peningkatan akurasi sebesar 16,9 % dengan Tesseract dan 13,8 % dengan SPNet.
Watermelon ripeness detector using near infrared spectroscopy Edwin R. Arboleda; Kimberly M. Parazo; Christle M. Pareja
Jurnal Teknologi dan Sistem Komputer Volume 8, Issue 4, Year 2020 (October 2020)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2020.13744

Abstract

This study aimed to design and develop a watermelon ripeness detector using Near-Infrared Spectroscopy (NIRS). The research problem being solved in this study is developing a prototype wherein the watermelon ripeness can be detected without the need to open it. This detector will save customers from buying unripe watermelon and the farmers from harvesting an unripe watermelon. The researchers attempted to use the NIRS technique in determining the ripeness level of watermelon as it is widely used in the agricultural sector with high-speed analysis. The project was composed of Raspberry Pi Zero W as the microprocessor unit connected to input and output devices, such as the NIR spectral sensor and the OLED display. It was programmed by Python 3 IDLE. The detector scanned a total of 200 watermelon samples. These samples were grouped as 60 % for the training dataset, 20 % for testing, and another 20 % for evaluation. The data sets were collected and are subjected to the Support Vector Machine (SVM) algorithm. Overall, experimental results showed that the detector could correctly classify both unripe and ripe watermelons with 92.5 % accuracy.
Kendali pH untuk sistem IoT hidroponik deep flow technique berbasis fuzzy logic controller Adnan Rafi Al Tahtawi; Robi Kurniawan
Jurnal Teknologi dan Sistem Komputer Volume 8, Issue 4, Year 2020 (October 2020)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2020.13822

Abstract

In hydroponic cultivation sites, pH control is still carried manually by checking the pH level with a pH meter and providing a pH balancing liquid manually. This study aims to design an automatic pH control system in the Deep Flow Technique (DFT) hydroponic system that uses the Internet of Things (IoT) based Fuzzy Logic Controller (FLC). The SKU SEN0161 sensor detects the pH value as FLC inputs in an error value and its changes. These inputs are processed using Mamdani FLC embedded in the Arduino Mega 2560 microcontroller. The FLC produces an output in a pH liquid feeding duration using the peristaltic pump. The results showed that FLC could maintain the pH value according to the set point with a settling time of less than 50 seconds, both with disturbance by adding pH liquid and without disturbance. The pH value can also be displayed on the website interface system as a monitoring system.
Prapemrosesan klasifikasi algoritme kNN menggunakan K-means dan matriks jarak untuk dataset hasil studi mahasiswa Sugriyono Sugriyono; Maria Ulfah Siregar
Jurnal Teknologi dan Sistem Komputer Volume 8, Issue 4, Year 2020 (October 2020)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2020.13874

Abstract

Keberadaan outlier pada dataset dapat menyebabkan rendahnya hasil akurasi pada proses klasifikasi. Outlier pada dataset dapat dihilangkan pada tahapan prapemrosesan algoritme klasifikasi. Clustering dapat digunakan sebagai metode pendeteksi outlier. Kajian ini bertujuan menerapkan K-means dan matriks jarak untuk mendeteksi outlier dan menghapusnya dari dataset yang sudah memiliki kelas label. Penelitian ini menggunakan dataset hasil studi mahasiswa berjumlah 6847 instance, dengan 18 atribut dan tiga kelas. Prapemrosesan menerapkan metode K-means untuk mendapatkan pusat klaster pada tiap class, matriks jarak digunakan untuk mengevaluasi jarak instance dengan pusat klaster. Outlier, kelas baru yang berbeda dengan kelas awal, yang ditemukan akan dihilangkan. Prapemrosesan ini meningkatkan hasil akurasi klasifikasi algoritme kNN. Data tanpa prapemrosesan menghasilkan akurasi sebesar 72,28 %, data hasil prapemrosesan menggunakan metode K-means dan Euclidean menghasilkan akurasi hasil klasifikasi sebesar 98,42 % (meningkat 26,14 %), sedangkan metode K-means dan Manhattan menghasilkan akurasi sebesar 97,76 % (meningkat 25,48 %).
Tree-based homogeneous ensemble model with feature selection for diabetic retinopathy prediction Tamunopriye Ene Dagogo-George; Hammed Adeleye Mojeed; Abdulateef Oluwagbemiga Balogun; Modinat Abolore Mabayoje; Shakirat Aderonke Salihu
Jurnal Teknologi dan Sistem Komputer Volume 8, Issue 4, Year 2020 (October 2020)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jtsiskom.2020.13669

Abstract

Diabetic Retinopathy (DR) is a condition that emerges from prolonged diabetes, causing severe damages to the eyes. Early diagnosis of this disease is highly imperative as late diagnosis may be fatal. Existing studies employed machine learning approaches with Support Vector Machines (SVM) having the highest performance on most analyses and Decision Trees (DT) having the lowest. However, SVM has been known to suffer from parameter and kernel selection problems, which undermine its predictive capability. Hence, this study presents homogenous ensemble classification methods with DT as the base classifier to optimize predictive performance. Boosting and Bagging ensemble methods with feature selection were employed, and experiments were carried out using Python Scikit Learn libraries on DR datasets extracted from UCI Machine Learning repository. Experimental results showed that Bagged and Boosted DT were better than SVM. Specifically, Bagged DT performed best with accuracy 65.38 %, f-score 0.664, and AUC 0.731, followed by Boosted DT with accuracy 65.42 %, f-score 0.655, and AUC 0.724 when compared to SVM (accuracy 65.16 %, f-score 0.652, and AUC 0.721). These results indicate that DT's predictive performance can be optimized by employing the homogeneous ensemble methods to outperform SVM in predicting DR.

Page 1 of 2 | Total Record : 11


Filter by Year

2020 2020


Filter By Issues
All Issue [IN PRESS] Volume 11, Issue 1, Year 2023 (January 2023) [IN PRESS] Volume 10, Issue 4, Year 2022 (October 2022) [IN PRESS] Volume 10, Issue 3, Year 2022 (July 2022) Volume 10, Issue 2, Year 2022 (April 2022) Volume 10, Issue 1, Year 2022 (January 2022) Volume 9, Issue 4, Year 2021 (October 2021) Volume 9, Issue 3, Year 2021 (July 2021) Volume 9, Issue 2, Year 2021 (April 2021) Volume 9, Issue 1, Year 2021 (January 2021) 2021: Publication In-Press Volume 8, Issue 4, Year 2020 (October 2020) Volume 8, Issue 3, Year 2020 (July 2020) Volume 8, Issue 2, Year 2020 (April 2020) Volume 8, Issue 1, Year 2020 (January 2020) Volume 7, Issue 4, Year 2019 (October 2019) Volume 7, Issue 3, Year 2019 (July 2019) Volume 7, Issue 2, Year 2019 (April 2019) Volume 7, Issue 1, Year 2019 (January 2019) Publication In-Press (2019) Volume 6, Issue 4, Year 2018 (October 2018) Volume 6, Issue 3, Year 2018 (July 2018) Volume 6, Issue 2, Year 2018 (April 2018) Volume 6, Issue 1, Year 2018 (January 2018) Volume 5, Issue 4, Year 2017 (October 2017) Volume 5, Issue 3, Year 2017 (July 2017) Volume 5, Issue 2, Year 2017 (April 2017) Volume 5, Nomor 1, Tahun 2017 (Januari 2017) Volume 4, Issue 4, Year 2016 (October 2016) Volume 4, Nomor 3, Tahun 2016 (Agustus 2016) Volume 4, Nomor 2, Tahun 2016 (April 2016) Volume 4, Nomor 1, Tahun 2016 (Januari 2016) Volume 3, Nomor 4, Tahun 2015 (Oktober 2015) Volume 3, Nomor 3, Tahun 2015 (Agustus 2015) Volume 3, Nomor 2, Tahun 2015 (April 2015) Volume 3, Nomor 1, Tahun 2015 (Januari 2015) Volume 2, Nomor 4, Tahun 2014 (Oktober 2014) Volume 2, Nomor 3, Tahun 2014 (Agustus 2014) Volume 2, Nomor 2, Tahun 2014 (April 2014) Volume 2, Nomor 1, Tahun 2014 (Januari 2014) Volume 1, Nomor 4, Tahun 2013 (Oktober 2013) Volume 1, Nomor 3, Tahun 2013 (Agustus 2013) Volume 1, Nomor 2, Tahun 2013 (April 2013) Volume 1, Nomor 1, Tahun 2013 (Januari 2013) More Issue