cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta pusat,
Dki jakarta
INDONESIA
Jurnal Sains & Teknologi Modifikasi Cuaca
ISSN : -     EISSN : -     DOI : -
Core Subject : Education,
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol. 15 No. 1 (2014): June 2014" : 6 Documents clear
ANALISIS VARIABILITAS CURAH HUJAN KOTA MARTAPURA KALIMANTAN SELATAN AKIBAT PERUBAHAN IKLIM M. Djazim Syaifullah; Fikri Nur Muhammad; Ibnu Athoillah; Samba Wirahma
Jurnal Sains & Teknologi Modifikasi Cuaca Vol. 15 No. 1 (2014): June 2014
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmc.v15i1.2650

Abstract

IntisariNegara Indonesia merupakan Negara Kepulauan yang terletak di Khatulistiwa sehingga rentan terhadap perubahan iklim.Curah hujan yang terjadi di suatu tempat dipengaruhi oleh faktor alam dan topografi daerah tersebut. Dengan melihat histori kejadian hujan selama 70 tahun (1915 – 2000) akan mengetahui pola hujan distribusi curah hujan suatu wilayah. Untuk memperoleh hasil  tersebut digunakan analisa regresi. Dalam analisa tersebut didapatkan dari tahun 1915 sampai dengan tahun 2000 untuk stasiun di Kota Martapura menunjukan pola kecerendungan kenaikan 4,5898 mm/tahun dengan persamaan regresi Y=4.5898 X-6600.4 with R2=0.0513.AbstractState of Indonesia is a country located on the equator that are vulnerable to climate change.  Rainfall (precipitation) that occurs in a place influenced by nature and topography of the area. By knowing historical rainfall events during 70 years (1915-2000) will determine the distribution pattern of rainfall in the area. To obtain the result about distribution pattern used regression analysis. In the regression analysis obtained that from 1915 until 2000 year for station in Martapura shows the rise pattern 4,5898 mm/years with a regression equation  Y=4.5898 X-6600.4 with R2=0.0513.
DESAIN KONSEPTUAL GROUND-BASED GENERATOR (GBG) OTOMATIS DAN KONSEP OPERASIONAL BERBASIS WIRELESS SENSOR NETWORK (WSN) Purwadi Purwadi; Tri Handoko Seto
Jurnal Sains & Teknologi Modifikasi Cuaca Vol. 15 No. 1 (2014): June 2014
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmc.v15i1.2651

Abstract

IntisariDilatarbelakangi oleh beberapa permasalahan operasional Teknologi Modifikasi Cuaca (TMC) dengan wahana pesawat terbang dan juga permintaan TMC yang semakin meningkat, maka dilakukan pengembangan teknologi Ground-Based Generator berupa desain konseptual Ground-Based Generator (GBG) otomatis dan konsep operasional berbasis wireless sensor network (WSN). Dari kajian teori, teknologi GBG efektif diterapkan dilereng pegunungan, sehingga konsep pengembangan teknologi ini dimaksudkan untuk operasional TMC waduk PLTA di Indonesia yang sebagian besar dikelilingi oleh daerah aliran sungai (DAS) berupa pegunungan. Di dalam tulisan ini dijelaskan 4 topografi waduk PLTA yang telah lama menggunakan jasa TMC yaitu DAS Riamkanan, DAS Larona, DAS Koto Panjang, dan DAS Singkarak. Data topografi yang menunjukkan kelayakan suatu DAS dapat diterapkan GBG diperoleh dari Digital Elevation Model (DEM) dan ditampilkan dengan software Global Maper. Selanjutnya, rancangan GBG otomatis di ilustrasikan dalam sketsa gambar. GBG otomatis memiliki fitur; autoloading flare, rak penyimpanan flare, solar panel, dan dikontrol dengan mikroprosesor. Dengan menerapkan konsep WSN, pengoperasian GBG dapat dilakukan secara terpusat untuk beberapa DAS sekaligus, sehingga kegiatan TMC mejadi lebih efektif dan efisien. AbstractMotivated by some operational problems of Weather Modification Technology (TMC) with airplane medium and also increasing the demand of TMC, then the development of Ground-Based Generator technology in the form of conceptual design of automatic Ground-Based Generator (GBG) and operational concepts based wireless sensor network (WSN) is done. From the study of theory, GBG effectively applied on mountain slope, so the concept of development of this technology is intended for TMC operation in hydroelectric (PLTA) dam in Indonesia that were mostly surrounded by watersheds (DAS) in the form of mountains. This paper describe four hydroelectric dams topography which has long used the TMC service (Riam Kanan DAS, DAS Larona, DAS Koto Panjang, and DAS Singkarak). The topographic data that indicate the feasibility of applied GBG in a watershed is obtained from the Digital Elevation Model (DEM) and displayed with Global Mapper software. Furthermore, the design of automatic GBG is illustrated in sketch drawings. The designed GBG has automatic features; autoloading flares, flare storage racks, solar panels, and controlled by a microprocessor. By applying the concept of WSN, GBG operation can be performed centrally for multiple DAS at once, so that the activities of TMC becoming more effective and efficient.
STANDAR HUJAN EKSTRIM DI RIAU MENGGUNAKAN METODE REGRESI KUANTIL Aristya Ardhitama; Yessy Christy Ulina
Jurnal Sains & Teknologi Modifikasi Cuaca Vol. 15 No. 1 (2014): June 2014
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmc.v15i1.2653

Abstract

IntisariSalah satu akibat dari adanya fenomena penamasan global dan perubahan iklim adalah meningkatnya kasus kejadian cuaca ekstrim dan iklim ekstrim yang terjadi di hampir sebagian besar wilayah Indonesia khususnya di wilayah Riau. Hingga kini belum ada batasan yang jelas atau standar tentang suatu kondisi cuaca dan iklim yang dapat dikategorikan ekstrim. Dari hasil perhitungan curah hujan ekstrim di Riau dengan 2 daerah sampel pos hujan yaitu data Stamet Pekanbaru dan Stamet Japura Rengat, menggunakan metode regresi kuantil, untuk Kota Pekanbaru nilai ekstrim tertinggi pada bulan November 518 mm dan nilai ekstrim terendah 28 mm pada bulan Juli. Sedangkan untuk di daerah Rengat nilai batas atas untuk curah hujannya pada bulan Desember 431.4 mm dan untuk batas bawah 14.3 mm. Nilai ekstrim untuk curah hujan bermanfaat untuk peringatan dini banjir dan kekeringan. AbstractOne of the global warming and climate change effects is increased number of extreme weather events and extreme climate events that occurred in most of Indonesia region, Riau in particular. Yet, there are no distinct border or any standard definition for those events to be categorized as extreme events. Extreme rainfall events have been calculated using 2 weather station data as sample in this paper, those are Pekanbaru and Japura Rengat station, with quantile regression method. For Pekanbaru station, the highest rainfall event is in November with 518 mm monthly rainfall, and the lowest rainfall event is in July with 28 mm monthly rainfall. For Japura Rengat station the highest rainfall event is in December with 431.4 mm monthly rainfall, and the lowest rainfall event is 14.3 mm monthly rainfall. Extreme rainfall can be used for flood and drought early warning.
TEKNOLOGI MODIFIKASI CUACA UNTUK MENDUKUNG KETAHANAN PANGAN DI INDONESIA -SEBUAH USULAN- Tri Handoko Seto; Budi Harsoyo; F. Heru Widodo
Jurnal Sains & Teknologi Modifikasi Cuaca Vol. 15 No. 1 (2014): June 2014
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmc.v15i1.2654

Abstract

IntisariMasalah pangan bagi suatu negara adalah suatu hal yang sangat krusial mengingat pangan adalah kebutuhan dasar bagi kehidupan manusia. Iklim yang fluktuatif berpengaruh terhadap produksi beras. Saat terjadi anomali iklim di Indonesia yang berakibat pada kekeringan yang berkepanjangan, produksi beras nasional terganggu akibat kurangnya pasokan air irigasi. Teknologi Modifikasi Cuaca (TMC) adalah suatu upaya manusia untuk memodifikasi cuaca dengan tujuan untuk mendapatkan kondisi cuaca seperti yang diinginkan. Penerapan TMC di Indonesia yang sudah dilakukan sejak tahun 1977 memiliki berbagai tujuan, antara lain menambah curah hujan untuk mengatasi kekeringan, serta pengisian air waduk/danau untuk kebutuhan irigasi dan PLTA. TMC pernah diterapkan pada tahun 2007 untuk menambah cadangan air guna meningkatkan produksi beras di Jawa Barat, Jawa Tengah, Jawa Timur, dan Lampung terkait program pemerintah untuk meningkatkan produksi beras nasional sebanyak 2 juta ton. Pada saat itu, TMC berhasil menyumbang peningkatan sebesar 25 %. Berbekal pengalaman tersebut maka TMC diusulkan untuk dilaksanakan di 10 provinsi penghasil beras tertinggi nasional setiap tahun. Penerapan TMC ini diperkirakan dapat meningkatkan produksi beras nasional sehingga tidak diperlukan impor beras bahkan menjadikan Indonesia menjadi surplus beras.AbstractFood problem for a country is a very crucial thing because food is a basic necessity for human life. Climate variability affects rice production. When climate anomalies occurred in Indonesia that resulted in prolonged drought, national rice production disrupted due to the lack of irrigation water supply. Weather Modification Technology (TMC) is a human attempt to modify the weather in order to get the weather conditions as needed. TMC implementation in Indonesia, which has been conducted since 1977 has a variety of purposes, such as rainfall enhancement to overcome the drought, as well as replenishing water reservoirs/lakes for irrigation and hydropower. TMC had applied in 2007 to increase water reserves in order to increase rice production in West Java, Central Java, East Java, and Lampung related government programs to increase national rice production by 2 million tons. At that time, TMC successfully accounted for an increase of 25 %. Based on that experience, TMC is proposed to be implemented in 10 top rice-producing provinces every year. TMC is expected to increase national rice production so as not necessary to import rice even make Indonesia a rice surplus.
ANALISIS CUACA PADA SAAT PELAKSANAAN PENYEMAIAN AWAN DI WADUK PLTA KOTA PANJANG BULAN APRIL - MEI 2013 Erwin Mulyana
Jurnal Sains & Teknologi Modifikasi Cuaca Vol. 15 No. 1 (2014): June 2014
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmc.v15i1.2655

Abstract

ABSTRAKTelah dilakukan analisis cuaca selama pelaksanaan TMC pada bulan April dan Mei 2013 di Waduk PLTA Kota Panjang. Temperatur permukaan laut di daerah Nino 3.4 menunjukkan ENSO netral dengan temperatur rata-rata pada bulan April dan Mei 2013 antara 27.6 s.d  27.7 oC serta nilai anomaly antara -0.03 s.d -0.1 oC. Penjalaran MJO aktif yang menunjukkan terjadinya peningkatan aktifitas konvektif di wilayah Sumatra terjadi pada awal April dan akhir Mei 2013. Arah angin pada level gradient bertiup dari barat daya – barat laut dengan kecepaan 5-15 knot. Siklon Tropis Mahasen di utara Sumatera yang terjadi pada pertengahan bulan Mei  berpengaruh terhadap berkurangnya hujan di daerah target. Kecepatan angin yang cukup tinggi di level 700-600 mb pada  awal kegiatan mengakibatkan pertumbuhan awan di daerah target tidak berkembang dengan optimal. Dalam kondisi kelembaban rendah masih dijumpai pembentukan awan orografik di sepanjang pegunungan Bukit Barisan bagian barat DAS Waduk PLTA Kota Panjang.
PEMANFAATAN TEKNOLOGI MODIFIKASI CUACA UNTUK PERKEBUNAN KELAPA SAWIT Samba Wirahma; Tri Handoko Seto; Ibnu Athoillah
Jurnal Sains & Teknologi Modifikasi Cuaca Vol. 15 No. 1 (2014): June 2014
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29122/jstmc.v15i1.2656

Abstract

IntisariTanaman Kelapa Sawit (Elais sp) adalah sumber utama minyak nabati sesudah kelapa di Indonesia. Tanaman tersebut merupakan komoditi andalan ekonomi Indonesia karena selain merupakan penghasil devisa, kelapa sawit merupakan salah satu alternatif upaya peningkatan kesejahteraan masyarakat melalui pembukaan lapangan pekerjaan dan lapangan usaha. Distribusi tanaman kelapa sawit di Indonesia dapat dijumpai di setiap pulau seperti Sumatera, Kalimantan, Sulawesi dan Jawa. Pada tahun 2013, dari total luas perkebunan kelapa sawit sebesar 9,14 juta hektar, sekitar 65% berada di pulau Sumatera, disusul Kalimantan (31%), Sulawesi (3%), kemudian Jawa dan Papua di bawah satu persen. Tanaman kelapa sawit tergolong ke dalam tanaman xerophyte yang dapat beradaptasi dengan kondisi air yang kurang, walaupun demikian tanaman tetap akan mengalami gejala stres air pada saat musim kemarau yang berkepanjangan. Salah satu upaya untuk mengantisipasi musim kemarau panjang dan kebakaran lahan yaitu dengan melakukan Teknologi Modifikasi Cuaca (TMC). Penerapan TMC di Indonesia sudah dilakukan sejak tahun 1979 dengan berbagai tujuan, yaitu menambah curah hujan untuk mengatasi kekeringan, pengisian air waduk untuk irigasi dan PLTA; mengurangi curah hujan untuk mengatasi banjir; longsor; dan mengurangi kabut asap akibat kebakaran hutan dan lahan. Simulasi proyeksi curah hujan dengan skenario pelaksanaan TMC 120 hari dilakukan di wilayah Riau, Kalimantan Tengah dan Sumatera Utara sebagai daerah dengan luas perkebunan sawit terbesar di Indonesia. Hasil dari simulasi tersebut adalah menghitung besarnya jumlah curah hujan tahunan yang dapat dihasilkan apabila dilakukan TMC 120 hari pada bulan April-Mei 2014 dan Agustus-September 2014 dengan asumsi tingkat pertambahan hujan ketika berada pada periode penyemaian awan sebesar 30%. Berdasarkan hasil simulasi curah hujan dengan skenario pelaksanaan TMC 120 hari, untuk wilayah Riau akan didapatkan penambahan curah hujan sebesar 198 mm/tahun, wilayah Kalimantan Tengah sebesar 254 mm/tahun dan wilayah Sumatera Utara sebesar 233 mm/tahun. Abstract Palm (Elais sp) is the main source of vegetable oil after coco in Indonesia. This plant is mainstay commodity of Indonesia because in addition to foreign exchange earner, palm oil is one alternative efforts to improve the welfare of society through the opening of employment and business field. Distribution of palm oil plantations in Indonesia can be found in every island like Sumatra, Kalimantan, Sulawesi and Java. In 2013, total area of palm oil plantations amounted to 9.14 million hectares, approximately 65% were on the island of Sumatra, Kalimantan followed (31%), Sulawesi (3%), then Java and Papua under one percent.  Palm oil plants belonging to the plant xerophyte that can adapt to conditions that are less water, however the plant will continue to experience symptoms of water stress during the long dry season. One effort to anticipate the long dry season and forest fires by performing the Weather Modification Technology. Application of this technology in Indonesia have been carried out since 1979 with a variety of purposes, namely to rain enhancement to overcome drought, filling water reservoirs for irrigation and hydropower; reduce rainfall to overcome floods; landslides; and reduce smog from forest fires and land.  Simulation of rainfall projection with applying weather modification technology for 120 days in Riau, Central Kalimantan, and North Sumatra as the area with the largest palm oil plantations in Indonesia. Result of this simulation is to calculate the amount of annual rainfall if weather modification for 120 days applied in April-May 2014 and AugustSeptember 2014, assuming growth rate when cloud seeding period is 30%. Based on this simulation resulted for Riau regoin will get additional rainfall 198 mm/year, Central Kalimantan Region 254 mm/year and North Sumatra Region 233 mm/year

Page 1 of 1 | Total Record : 6


Filter by Year

2014 2014


Filter By Issues
All Issue Vol. 23 No. 2 (2022): December 2022 Vol. 23 No. 1 (2022): June 2022 Vol. 22 No. 2 (2021): December 2021 Vol. 22 No. 1 (2021): June 2021 Vol. 21 No. 2 (2020): December 2020 Vol. 21 No. 1 (2020): June 2020 Vol. 20 No. 2 (2019): December 2019 Vol 20, No 2 (2019): December 2019 Vol. 20 No. 1 (2019): June 2019 Vol 20, No 1 (2019): June 2019 Vol 19, No 2 (2018): December 2018 Vol. 19 No. 2 (2018): December 2018 Vol. 19 No. 1 (2018): June 2018 Vol 19, No 1 (2018): June 2018 Vol 19, No 1 (2018): June 2018 Vol 19, No 2 (2018) Vol. 18 No. 2 (2017): December 2017 Vol 18, No 2 (2017): December 2017 Vol 18, No 2 (2017): December 2017 Vol 18, No 1 (2017): June 2017 Vol. 18 No. 1 (2017): June 2017 Vol 18, No 1 (2017): June 2017 Vol 17, No 2 (2016): December 2016 Vol. 17 No. 2 (2016): December 2016 Vol 17, No 2 (2016): December 2016 Vol. 17 No. 1 (2016): June 2016 Vol 17, No 1 (2016): June 2016 Vol 17, No 1 (2016): June 2016 Vol 16, No 2 (2015): December 2015 Vol 16, No 2 (2015): December 2015 Vol. 16 No. 2 (2015): December 2015 Vol 16, No 1 (2015): June 2015 Vol 16, No 1 (2015): June 2015 Vol. 16 No. 1 (2015): June 2015 Vol 15, No 2 (2014): December 2014 Vol 15, No 2 (2014): December 2014 Vol. 15 No. 2 (2014): December 2014 Vol. 15 No. 1 (2014): June 2014 Vol 15, No 1 (2014): June 2014 Vol 15, No 1 (2014): June 2014 Vol. 14 No. 2 (2013): December 2013 Vol 14, No 2 (2013): December 2013 Vol 14, No 2 (2013): December 2013 Vol 14, No 1 (2013): June 2013 Vol. 14 No. 1 (2013): June 2013 Vol 14, No 1 (2013): June 2013 Vol. 13 No. 2 (2012): December 2012 Vol 13, No 2 (2012): December 2012 Vol 13, No 2 (2012): December 2012 Vol 13, No 1 (2012): June 2012 Vol. 13 No. 1 (2012): June 2012 Vol 13, No 1 (2012): June 2012 Vol 12, No 2 (2011): December 2011 Vol 12, No 2 (2011): December 2011 Vol. 12 No. 2 (2011): December 2011 Vol 12, No 1 (2011): June 2011 Vol. 12 No. 1 (2011): June 2011 Vol 12, No 1 (2011): June 2011 Vol 11, No 2 (2010): December 2010 Vol. 11 No. 2 (2010): December 2010 Vol 11, No 2 (2010): December 2010 Vol 11, No 1 (2010): June 2010 Vol 11, No 1 (2010): June 2010 Vol. 11 No. 1 (2010): June 2010 Vol. 3 No. 2 (2002): December 2002 Vol 3, No 2 (2002): December 2002 Vol 3, No 2 (2002): December 2002 Vol 3, No 1 (2002): June 2002 Vol 3, No 1 (2002): June 2002 Vol. 3 No. 1 (2002): June 2002 Vol 2, No 1 (2001): June 2001 Vol. 2 No. 1 (2001): June 2001 Vol 2, No 1 (2001): June 2001 Vol 1, No 2 (2000): December 2000 Vol 1, No 2 (2000): December 2000 Vol. 1 No. 2 (2000): December 2000 Vol 1, No 1 (2000): June 2000 Vol 1, No 1 (2000): June 2000 Vol. 1 No. 1 (2000): June 2000 More Issue