cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 15 Documents
Search results for , issue "Vol 10, No 5 (2024): May" : 15 Documents clear
Influence of Sunflower Seed Husks Ash on the Structure Formation and Properties of Cement Concrete Evgenii M. Shcherban'; Sergey A. Stel'makh; Alexey N. Beskopylny; Levon R. Mailyan; Besarion Meskhi; Andrei Chernil’nik; Diana El'shaeva; Anastasia Pogrebnyak; Roman Yaschenko
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-08

Abstract

The limitation of the application of non-renewable materials is one of the solutions to the problem of the sustainable evolution of civilization in the 21st century. Using additional binders in concrete obtained from plant waste will be economically and environmentally beneficial and will also allow us to move closer to achieving sustainable development goals. This study searches for rational composition components and a methodological approach regarding the technological characteristics to get the highest quality elements and prime concrete properties on the basis of sunflower seed husk ash (SSHA). Experimental concrete specimens were manufactured with partial Portland cement substitution with SSHA amounts ranging from 2% to 16% by weight in increments of 2%. This study focuses on investigating the density and workability of the concrete mixture, along with the compressive strength, concrete density, and water absorption. This article used granulometric, microscopic, and X-ray phase analysis methods. Including SSHA in all considered ranges reduces the slump in concrete mixtures. The optimal SSHA content in concrete is up to 12%. An 8% SSHA content has been found to deliver the most favorable mechanical characteristics of the concrete studied. The compressive strength of the investigated concrete has increased by 14.89%, and water absorption has decreased by 15.78%. Doi: 10.28991/CEJ-2024-010-05-08 Full Text: PDF
Effect of Steel Fiber on Plastic Hinge Length of Concrete Columns: Buckingham Theory Application . Tavio; Bambang Sabariman; Slamet Widodo
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-03

Abstract

The accuracy of designing the performance of concrete structures nowadays not only depends on the use of standard materials (cement, sand, and gravel) for certain concrete strengths but also on the accuracy of using additional materials for concrete, such as steel fiber. The use of steel fiber not only can improve the performance of concrete structures to behave in a ductile manner but can also form plastic hinges according to design purposes. The design of the axial load of Pa=0.121.Ag.f'c is based on the prediction of the column’s axial capacity. The columns were designed to behave in a flexural manner. As predicted, the lengths of the plastic hinges were found not too long. Controlling the length of plastic hinges in the design of structural concrete members is necessary to avoid excessive displacements. The control is mainly related to the prediction of the plastic hinge length. Thus, in this case, a plastic hinge length formula is required. In the study, the length of the plastic hinges of columns, which are confined with square stirrups and reinforced with steel fiber with Vf = 0%, 0.5%, 1%, 1.5%, and 2%, is proposed. This plastic hinge length formula is proposed after all column test specimens have met the displacement ductility requirement of mD>4, meaning that all test specimens are defined as very ductile. Doi: 10.28991/CEJ-2024-010-05-03 Full Text: PDF
Pulsed-Bed Column Adsorption for Triclosan Removal Using Macadamia Nut Shell Activated Carbon Jareeya Yimrattanabovorn; Mananya Phalaiphai; Siriwan Nawong
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-019

Abstract

Triclosan (TCS), a common antibacterial agent found in numerous personal care products, has been detected in wastewater and surface water and is now of significant environmental concern due to its health impacts. To mitigate this issue, various treatment methods have been explored. This study investigated the efficacy of Macadamia nut shell activated carbon (MAC) as an economical adsorbent for triclosan removal. A pulsed-bed column adsorption technique was applied to enhance adsorption capacity and prolong the operational lifespan of the column. Batch experiments were conducted to explore various parameters and adsorption capacity. Column experiments were carried out to investigate breakthrough curves and various associated parameters. In batch experiments, MAC exhibited a high TCS adsorption capacity of 119.05 mg/g, and optimal adsorption conditions were determined. Adsorption kinetics followed the pseudo-second-order model, and equilibrium data were well-fitted by both the Langmuir and Freundlich isotherm models. A pulsed-bed column adsorption showed superior performance compared to a fixed-bed column under specific conditions (flow rate: 10 mL/min, TCS initial concentration: 60 mg/L, bed column height: 10 cm) and removal bed height of only 6 cm, successfully enhancing TCS adsorption capacity to 53.40 mg/g and extending the operational lifespan of the column to 5,280 minutes. Adapting pulsed-bed columns for TCS removal from wastewater in the personal care product industry led to the extension of column life with increased adsorption capacity and minimized the use of adsorbents as a practical and environmentally friendly method. Doi: 10.28991/CEJ-2024-010-05-019 Full Text: PDF
Experimental and Numerical Research on the Behavior of Steel Columns with Circular Hollow Cross Sections Florim Grajçevci; Armend Mujaj; Driton Kryeziu; Guxim Rrudhani; Neritan Shkodrani
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-014

Abstract

A circular, hollow tubular steel column is introduced for experimental and analytical analysis in this study. A series of axial compression tests for the variation of static schemes are reported in this study. All theoretical, numerical, and experimental analyses are based on the European Standards for the steel structure, respectively EN 1993-1-1. The experimental models of steel columns are conducted on actual steel columns with a length of 3000 mm and a circular hollow section of 114.3/2.8 mm. To assess the behavior and stress values of the columns, various schematically supported systems are modeled, starting from the axial-centered columns to the symmetrical eccentric load and asymmetrical loaded columns. 3D modeling of the steel columns using the finite element program SEISMOSOFT is also developed for such elements. The accuracy of the model is compared with the experimental results using numerical analysis by the finite element method. Finally, the numerical comparison of the results provides a recommendation for the engineers regarding the design and construction of such columns. Doi: 10.28991/CEJ-2024-010-05-014 Full Text: PDF
GGBFS and Red-Mud based Alkali-Activated Concrete Beams: Flexural, Shear and Pull-Out Test Behavior Hebah M. Al-Jabali; Ahmed A. El-Latief; Mohamed Salah Ezz; Shady Khairy; Amr A. Nada
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-09

Abstract

Geopolymers and antacid-enacted fasteners have accumulated critical interest as promising development and fixing materials because of their exceptional properties. Also, they bring about less contamination contrasted with regular concrete cements. Geopolymers address a clever class of suggested restricting materials blended through the basic enactment of bountiful aluminosilicate materials. The usage of geopolymer materials from side effects offers a critical decrease in carbon impression and yields positive natural effects. Geopolymer is progressively recognized as a plausible substitute for OPC concrete. In this review, sodium-based antacid activators, especially sodium metasilicate (Na2SiO3), were used for different blend extents. The boundaries researched included NaOH arrangements with a grouping of 8 M, alongside a Na2SiO3/NaOH proportion of 1. This paper evaluates the fundamental characteristics of geopolymer cement beams, employing red mud and GGBFS in powdered form as complete replacements for traditional concrete. Six bar specimens are tested under a two-point static loading condition, all cured at room temperature under ambient conditions. Of the six beams, three were exposed to flexural conduct testing with a molarity of 8 M, while the excess three beams were tried for shear conduct. The outcomes of testing geopolymer beams subjected to shear and bending loads indicated that the beams incorporating aluminum slag performed better than those incorporating blast furnace slag. Both types also demonstrated promising results compared to beams incorporating OPC, highlighting their potential environmental benefits compared to cement use. Doi: 10.28991/CEJ-2024-010-05-09 Full Text: PDF
Influence of Shear Strain on the Deflection of Girders Antonia J. Lazarević; Tanja Mališ; Elizabeta Šamec; Elizabeta Jerečić
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-04

Abstract

Numerical calculations are a standard part of modern structural design. Engineers remain particularly interested in real problems where analytical and numerical solutions can be compared with experimental results. Such cases are typical examples of benchmarks because they are used to verify the assumptions introduced. This study shows in detail how shear stresses affect the deflection of a relatively short and high cantilever when the span-to-height ratio of the cross-section is less than five. Such models are frequently used in the design of cantilevers that support heavily loaded beams, for example in the cement industry (e.g., often as structural elements for a heat exchanger system) or for the assessment of short cantilever limit states that appear during excavation in rock sediments. The models are also suitable for designing the various details and joints in the industry of prefabricated elements. This work analyzes in depth the analytical solutions for the displacement field of the linear elastic plane stress theory with two displacement boundary conditions. Also, the solutions were compared with the beam, two-, and three-dimensional numerical models using SAP2000. The results highlight the fundamental principles and solutions behind plane stress and beam theories, with an insight into the advantages and limitations of such models. Doi: 10.28991/CEJ-2024-010-05-04 Full Text: PDF
Integration of Blockchain-Enabled Smart Contracts in Construction: SWOT Framework and Social Network Analysis Monica Ghaly; Emad Elbeltagi; Adel Elsmadony; Mohamed A. Tantawy
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-020

Abstract

The construction sector, one of the most ancient industries globally, holds a crucial role in the progress and development of societies. However, it faces persistent productivity and efficiency challenges, rendering it a relative setback when compared to other sectors. In the ever-evolving landscape of the construction industry, characterized by complex projects, numerous stakeholders, and intricate contractual agreements, the integration of emerging technologies presents an unprecedented opportunity for transformation. Smart contracts (SCs), underpinned by blockchain (BC) technology, hold the potential to streamline and revolutionize traditional construction processes. Current literature shows a lack of comprehensive quantitative understanding of how Blockchain-enabled Smart Contracts (BSC) can affect the construction sector. To address this gap, the authors have (1) conducted a systematic keyword analysis of literature on SC in construction from Scopus and Web of Science (WoS) databases; (2) conducted a strengths–weaknesses–opportunities–threats (SWOT) analysis of BSC’s adoption in the construction industry from 174 peer-reviewed papers; (3) identified a holistic list of 72 factors steering BSC adoption in construction, categorized into the 4 aspects of the SWOT framework; (4) performed social network analysis (SNA) to quantitively assess the literature in terms of the identified factors; and (5) conducted clustering analysis to categorize combination of factors frequently highlighted in research publications into common groups. This research offers a comprehensive and methodical evaluation of the potential advantages, applications, and challenges associated with integrating BSC in the construction industry. The findings of SNA and clustering reveal a notable lack of investigation into certain combinations of factors in existing academic research. This disparity and the ensuing knowledge gaps may affect SC’s adoption in the construction sector. To this end, this study equips stakeholders with the insights necessary to make informed decisions in this rapidly evolving sector and contributes to a roadmap for future BSC construction-related research. Doi: 10.28991/CEJ-2024-010-05-020 Full Text: PDF
Quality of Harvested Rainwater from a Green and a Bitumen Roof in an Air Polluted Region Emil Tsanov; Dobril Valchev; Irina Ribarova; Galina Dimova
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-015

Abstract

A one-year study was conducted to evaluate the impact of air pollution and roof coating on runoff quality. An existing 440 sq meter bitumen roof of a single-story building was coated with an extensive green roof layer on one half. Rainfall and runoff samples from both roofs were collected during 11 rainfall events after the separation of the first flush. The study monitored several key parameters, including pH, electrical conductivity (EC), turbidity, chemical oxygen demand (COD), ammonium nitrogen, nitrate nitrogen, and phosphates. The study revealed that both types of roofs altered the rainfall quality, but the changes caused by the green roof were more substantial. Although the retention of runoff from green roofs has a widely acknowledged positive impact on collecting systems, our study shows that green roofs also result in a 7.5-fold increase in COD concentrations, a 5.4-fold increase in the sum of ammonium and nitrate nitrogen, and a 2.3-fold increase in phosphates compared to bitumen roofs. A clear link between the quality of rainwater/runoff and air pollution was not established. The study's findings will aid in the development and management of local rainwater harvesting systems and enhance global understanding of the primary quality parameters of various roof types, particularly in regions with air pollution. Doi: 10.28991/CEJ-2024-010-05-015 Full Text: PDF
Analysis and Prediction of Rainfall with Oceanic Nino Index and Climate Variables Using Correlation Coefficient and Deep Learning Chayanat Buathongkhue; Kritsana Sureeya; Natapon Kaewthong
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-01

Abstract

This article presents the relationship between the Oceanic Nino Index (ONI) and monthly rainfall on the southern and eastern coast of Thailand, specifically in Narathiwat, Pattani, and Yala provinces, where influences have been commonly observed. This research aims to study the relationship between the Oceanic Nino Index (ONI) and monthly rainfall to develop a model for predicting monthly rainfall. Despite previous related research, there has been no in-depth study on the relationship between the Oceanic Nino Index (ONI) and monthly rainfall in areas adjacent to the sea. The correlation coefficient was used to determine the relationship, revealing that the ONI value is significantly correlated with the amount of rainfall in the current month and the following month. This correlation paved the way for developing a model to predict monthly rainfall. Multiple linear regression, recurrent neural networks, and long short-term memory models were employed for this purpose. The study found that utilizing a recurrent neural network yielded the best prediction efficiency, with Mean Absolute Error (MAE) values of 112.76 mm for Narathiwat province, 81.06 mm for Pattani province, and 97.67 mm for Yala province. Doi: 10.28991/CEJ-2024-010-05-01 Full Text: PDF
Vulnerability Index Assessment for Mapping Ground Movements Using the Microtremor Method as Geological Hazard Mitigation Adi Susilo; Siti Zulaikah; A. Fauzi Pohan; M. Fathur Rouf Hasan; Farizky Hisyam; Siti Rohmah; M. Aryono Adhi
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-017

Abstract

Various geological disasters, such as landslides and ground movements, occur annually in Srimulyo Village, Malang District, with varying levels of damage. Ground movements can affect structures built above, causing sinking, cracking, and collapse. Research into landslides and ground movements triggered by vibrations is generally conducted using the microtremor method, which has proven effective. This study uses the microtremor method to map the soil condition that is potentially prone to movement or landslides based on the observed soil vulnerability index. Data was collected using a TDL 303s Digital Portable Seismograph instrument; the measurement points were established in the form of a grid distributed across the research area, with a recording duration of approximately 45 minutes at each point. The analysis technique utilizes the Horizontal Vertical Spectrum Ratio (HVSR) based on the Fast Fourier Transform (FFT) principle. The study’s results found that the research location’s seismic vulnerability index varies between 6.5 and 16.5. Areas with high seismic vulnerability index values, specifically those with Kg>11.5, are scattered on the west, south, and southeast sides of the research location. Based on field observations, these areas are dominated by relatively thick sediment layers, leading to lower dominant frequency values and higher amplification values; consequently, the seismic vulnerability index in the southern region is also high. Doi: 10.28991/CEJ-2024-010-05-017 Full Text: PDF

Page 1 of 2 | Total Record : 15


Filter by Year

2024 2024


Filter By Issues
All Issue Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol. 10 No. 7 (2024): July Vol 10, No 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue