cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Productivity Analysis of Micro-Trenching Using Simphony Simulation Modeling Hediyeh Vaseli; Leila Hashemian; Alireza Bayat
Civil Engineering Journal Vol 6, No 11 (2020): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091607

Abstract

Micro-trenching is an innovative method for installing fiber optic cable in residential areas and business districts which minimizes surface scarring and potential negative social and environmental impacts. This method has three major steps including cutting a narrow trench in the pavement, cable installation and trench backfilling. This paper discusses a Simphony simulation model of the micro-trenching procedure and analyzes its productivity. Brief descriptions of the micro-trenching method and two field installations used to validate the model are included. A simulation model was developed for two different installation depths of 7.6 and 23 cm using two different methods. To provide an estimation of project duration, the impact of weather conditions on micro-trenching productivity was also considered. The developed model can be used for what if scenarios and for predicting the outcomes, which may be useful for studying the procedure and verifying if any productivity improvement can be achieved. The results indicate that the influence of installation depth is more significant than the impact of weather conditions. Reducing installation depth from 23 cm to 7.6 could improve productivity up to 50% while cold weather condition can reduce productivity by 18.8%. The simulation model demonstrates that the productivity can be improved up to 16% by overlapping two steps during the installation process: starting the cleaning procedure when a portion of cutting is completed. Doi: 10.28991/cej-2020-03091607 Full Text: PDF
Prediction of Ground Settlement Induced by Slurry Shield Tunnelling in Granular Soils Mo'men Ayasrah; Hongsheng Qiu; Xiedong Zhang; Mohammad Daddow
Civil Engineering Journal Vol 6, No 12 (2020): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091617

Abstract

Underground structures play an important role in achieving the requirements of rapid urban development such as tunnels, parking garages, facilities, etc. To achieve what is needed, new transportation methods have been proposed to solve traffic congestion problems by using of high-speed railway and subway tunnels. One of the issues in urban spaces due to tunnel excavation is considerable surface settlements that also induce problems for surface structures. There are a variety of published relationships concerned with field measurements and theoretical approaches to evaluating the amount of the maximum surface settlement value due to tunneling. This paper studies the ground surface settlement caused by the Greater Cairo Metro – Line 3 - Phase-1. This project was constructed by a slurry shield Tunnel Boring Machine (TBM). Therefore, this work consists of two parts. The first part presents the details of the project and monitoring results field and laboratory geotechnical investigations in order to determine the soil properties. The second part is to the comparison between the field measurements and theoretical approaches for surface settlement due to tunneling construction. At the end of the works, the results show that the more convenient methods which approach the field measurements, and the major transverse settlement occurs within the area about 2.6 times the diameter of the tunnel excavation. Doi: 10.28991/cej-2020-03091617 Full Text: PDF
Strengthening and Repair of a Precast Reinforced Concrete Residential Building M. Jamal Shannag; Mahmoud Higazey
Civil Engineering Journal Vol 6, No 12 (2020): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091630

Abstract

The deterioration or ageing of the existing infrastructures coupled with increased safety requirements necessitate immediate strengthening. Developing long lasting and cost effective repair techniques and materials continue to capture the attention of concrete professionals worldwide. The main purpose of this investigation was to extend the life span of a multi-storey precast reinforced concrete structure built in Riyadh 40 years ago. The condition assessments relied on analytical tools, visual, field and laboratory experiments for core samples collected from the building. The analytical checks of the building revealed considerable deflections of some slabs because of design error. The field and chemical analysis tests performed, confirmed the occurrence of durability defects as a result of poor workmanship during the construction stage. Several state-of-the-art repair techniques and materials were used for enhancing the service life of the structure at a minimum cost. The Repair strategy implemented included, removal of the deteriorated concrete, pouring a bonding agent on the surface of the damage, followed by injecting high strength cementitious grouts, supporting the deflected slabs using I-section steel beams, using cathodic protection to prevent corrosion, strengthening the columns and beams using carbon fiber reinforced polymer (CFRP) sheets, and steel jackets. Doi: 10.28991/cej-2020-03091630 Full Text: PDF
Bid Evaluation and Assessment of Innovation in Road Construction Industry: A Systematic Literature Review Pardeep Kumar Oad; Stephen Kajewski; Arun Kumar; Bo Xia
Civil Engineering Journal Vol 7, No 1 (2021): January
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091646

Abstract

Objectives: This paper present a thorough understanding of bid evaluation process and assessment of innovation in road construction industry. Methods/Analysis: The research articles reviewed are based on topics of bid evaluation process, evaluation of bids in road construction industry, the indicators and techniques of bids evaluation, process of Bid evaluation in countries, innovation in road industry, and indicators of innovation in the context of road construction industry. Findings: It is widely accepted that projects related to the road construction must be accomplished in an organized manner. Literature indicates that the road constructing demands from customers and competition of assessing and evaluating tenders have been increasing rapidly. Novelty /Improvement: Challenges in developing suitable roads contribute to the inconsistency in the industry and directly demands towards physical work on a road construction project, nevertheless, a failure to accurately assessment of tenders can lead to complications for the whole project and road Construction Company. The selection of a suitable construction contractor’s surges likelihoods of successful achievement of a road construction project. This may also achieve the customer goals, and retain the project schedule on time, within the budget and achieve high quality project. Doi: 10.28991/cej-2021-03091646 Full Text: PDF
Improvement of Flexural and Shear Strength of RC Beam Reinforced by Glass Fiber-Reinforced Polyurea (GFRPU) Song, Jun-Hyeok; Eun, Hee-Chang
Civil Engineering Journal Vol 7, No 3 (2021): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091662

Abstract

The Glass Fiber-Reinforced Polyurea (GFRPU) which is the composite by the elastic polyurea and milled glass fiber have the mechanical characteristics to enhance tensile strength as well as ductility. It must be reinforcement materials in repair and retrofit applications for strengthening structural capacity and has a merit of simple construction of spray coating to prevent the debonding from concrete surfaces unlike the existing strengthening methods such as Fiber-reinforced polymer (FRP) or steel plate. This work compares the improvement degree in load-carrying capacity as well as flexural ductility of RC beam reinforced externally by polyurea or GFRPU. Seven specimens of four reinforced concrete (RC) beams for evaluating flexure-resisting capacity and three beams for shear-strengthening capacity are tested. The mechanical behavior and characteristics of the specimens reinforced by local and global reinforcement method classified according to strengthened area are compared. It is shown that the polyurea- or GFRPU- reinforcement leads to the enhancement in the load-resisting capacity up to 8~11% and flexural ductility within the range of 8.41~13.9 times of the non-reinforced beam. And the global reinforcement method has more improvement in the shear- and flexure-resisting capacity than the local method. It is also observed that the GFRPU can be more effectively utilized in enhancing the structural shear-resisting capacity than the flexure-carrying capacity. Doi: 10.28991/cej-2021-03091662 Full Text: PDF
Performance of Bio Concrete by Using Bacillus Pasteurii Bacteria Metwally, Gehad A. M.; Mahdy, Mohamed; Abd El-Raheem, Ahmed El-Raheem H.
Civil Engineering Journal Vol 6, No 8 (2020): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091559

Abstract

In concrete, cracking is a common phenomenon due to its relatively low tensile strength‎ ‎, which occurs due to external loads and imposed deformations‎‎. The main research objective is to create a kind of self-healing concrete by employing mineral producing bacteria Bacillus pasteurii‎ to locate the rift in the most favourable circumstances for autogenous healing to take place. Self-healing concrete containing bacteria has been generated for this study through the application of bacterial self-healing elements as ‎spores ‎and nutrients with different percentages of bacteria ranging from (10% - 25%) as a replacement of mixing water is added at the time of pouring. The bacteria influence was observed by Scanning Electron Microscope (SEM) and with Energy ‎Dispersive X-ray Spectrometer. The mechanical properties and durability of a thirty-five mixture were ‎examined. The optimal blending content proportion was ‎10SF20BC, which showed an increment in compressive strength and flexural strength compared to the control mixture ‎to ‎reach 79.16%, 50% respectively and 24.38% enhancement in sulfate resistance. The highest percentage of calcium carbonate precipitations was ‎9.49% of a weight of ‎mixtures ‎elements, which, in turn, revealed the highest area repair rate, which was able to fill the ‎crack with widths leads to 0.80 mm.
Seismic Evaluation of New Steel Infill Panels for Steel Shear Walls Ali Joharchi; Siti Aminah Osman; Mohd Yazmil Md Yatim; Mohammad Ansari
Civil Engineering Journal Vol 7, No 4 (2021): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091678

Abstract

Corrugated Steel Shear Wall (CSSW) is an efficient shear wall system, which has higher energy dissipation capacity, ductility and stiffness when compared to the Steel Plate Shear Wall (SPSW) with flat infill plate. Despite of these advantages, the ultimate load of CSSW is lower than that of SPSW. Various studies conducted to improve the cyclic behavior of CSSW revealed that increasing corrugation angle might enhance energy dissipation capacity and toughness of CSSWs. However, the ultimate load of CSSW was not improved by increasing the corrugation angle. Thus, the current study proposed new corrugated infill panel schemes to improve the ultimate load of CSSWs. To this end, Finite Element (FE) models were established using ABAQUS/Standard and verified with the experimental results from previous researches. The corrugation angle of the proposed plates was found based on a numerical investigation on seven CSSW FE models with the corrugation angle ranges from 30° to 120°. The FE results revealed that the model with the corrugation angle of 120 achieved highest ultimate load, energy dissipation capacity and toughness amongst the CSSW models. In addition, the ultimate loads, energy dissipation capacities and toughness of the proposed infill plates were up to 11.8%, 53.9% and 8.8% respectively higher than those of CSSW model with the corrugation angle of 120°. Furthermore, the proposed infill plates use up to 13.4% lower amount of steel compared to the corrugated plate with the corrugation angle of 120. Doi: 10.28991/cej-2021-03091678 Full Text: PDF
Effect of Silica Fume on Permeability and Microstructure of High Strength Concrete Satish Kumar Chaudhary; Ajay Kumar Sinha
Civil Engineering Journal Vol 6, No 9 (2020): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091575

Abstract

The important concrete structure in the vicinity of industry, thermal power plant suffers deterioration by the acid rain cause due to combination of CO2, SOx and NOx with rain water. A combined attack that is from acid as well as sulphate can be observed under impact of sulphuric acid. It attacks on Calcium hydroxide and form Calcium sulphate, which can be leached out easily and make Interfacial Transition Zone (ITZ) poor. The water retaining structure such as dam, weir should be impermeable and that can be achieved by binary cementitious blends, using Silica fume (SF). Silica fume a by product of silicon industry, proves very effective in improving the microstructure of concrete due to their finer particle size, approximately 100 times finer than cement particles. The SEM image of binary blended high strength concrete (HSC) with Silica fume shows the condensed packing of cement hydration product and a dense microstructure as compare to control mix. The water permeability test result reveals that there is about 87 percent reduction in the coefficient of permeability achieved by inclusion of 10% Silica fume (SF) by weight of cement. Rapid chloride penetration test (RCPT) has been performed to investigate the ingress of chloride ions into the concrete. There was significant reduction in chloride ions penetration recorded due to SF inclusion.
Properties of Self-Compacting Mortar Containing Slag with Different Finenesses Siham Hammat; Belkacem Menadi; Said Kenai; Jamal Khatib; El-Hadj Kadri
Civil Engineering Journal Vol 7, No 5 (2021): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091694

Abstract

It is well established that Self-Compacting Concrete (SCC) contains large amounts of fines including mineral admixtures, such as fly ash and slag, in order to avoid segregation and to increase cohesion. The use of these materials in concrete reduces CO2 emissions and contributes towards sustainable construction. To overcome the negative effect of slag on the strength development slag was ground to three finenesses. Therefore, this paper examines the rheological, compressive strength, total and autogenous shrinkage and capillary water absorption of Self-Compacting Mortars (SCM) containing ground granulated blast furnace Slag (S). A total of seven mortar mixes were prepared. The control mix had a proportion of 1 (cement): 1.8 (sand): 0.38 (water). In the other mixes, the cement was partially replaced with 15% and 30% slag of different fineness of 350, 420, and 500 m2/kg. The other constituents remained unchanged. Testing included slump flow, V-funnel flow time, yield stress and viscosity, compressive strength, total and autogenous shrinkage, and capillary water absorption. The presence of slag was found to reduce the plastic viscosity and yield stress of SCM mixtures as the content and the fineness increase. The higher the fineness (specific surface) of the slag the less the rheological parameters (i.e. slump flow and viscosity). The results show also a reduction in compressive strength of SCM at early ages of curing in the presence of slag. However, in the long-term, the compressive strength of SCM mixtures containing slag was higher than that of control mortar. Generally, there is reduction in the total shrinkage and an increase in the autogenous shrinkage of SCM mixtures as the content and fineness increase. Doi: 10.28991/cej-2021-03091694 Full Text: PDF
Shear Strength of Reinforced Concrete Columns Retrofitted by Glass Fiber Reinforced Polyurea Jun-Hyeok Song; Eun-Taik Lee; Hee-Chang Eun
Civil Engineering Journal Vol 6, No 10 (2020): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091587

Abstract

Aged structures and structures constructed based on outdated non-seismic design codes should be retrofitted to enhance their strength, ductility, and durability. This study evaluates the structural performance of reinforced concrete (RC) columns enhanced via polyurea or glass fiber reinforced polyurea (GFRPU) strengthening. Four RC column specimens, including a reference specimen (an unstrengthened column), were tested to evaluate the parameters of the strengthening materials and the strengthened area. The tests were carried out under a combined constant axial compressive load and quasi-static cyclic loading. The experimental results show that the composite strengthening provides lateral confinement to the columns and leads to enhanced ductility, shear-resistance capacity, and dissipated energy. The shear strength provided by the composites depends on the degree of lateral confinement achieved by the composite coating. The specimens finally failed through the development of diagonal tension cracks within the potential plastic hinge regions. The specimen treated with GFRPU strengthening showed greater strength and dissipated more energy than the specimen treated with polyurea strengthening. Furthermore, by modifying ATC-40, this study proposed an equation to estimate the shear capacity provided by the composites.

Page 77 of 185 | Total Record : 1848


Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue