cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Strengths of Struts and Nodal Zones for Strut-and-Tie Model Design of Reinforced Concrete Corbels Young Mook Yun; Youjong Lee
Civil Engineering Journal Vol 7, No 8 (2021): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091725

Abstract

The strut-and-tie model (STM) method is useful for the limit state design of reinforced concrete (RC) corbels. However, for the rational design of RC corbels, designers must accurately determine the strengths of concrete struts and nodal zones to check the strength conditions of a selected STM and the anchorage of reinforcing bars in nodal zones. In this study, the authors suggested a numerical process for determining the strengths of concrete struts and nodal zones in RC corbel STMs. The technique incorporates the state of two-dimensional (2-D) stresses at the strut and nodal zone locations, 2-D failure envelope of concrete, deviation angle between the strut orientation and compressive principal stress trajectory, and the effect of concrete confinement by reinforcing bars. The authors also proposed the strength equations of struts and nodal zones that apply to the typical determinate and indeterminate STMs of RC corbels. The authors considered the effects of the shear span-to-effective depth ratio, the horizontal-to-vertical load ratio, and the primary tensile and horizontal shear reinforcement ratios in developing the strength equations. The authors predicted the failure strengths of 391 RC corbels tested to examine the appropriateness of the proposed numerical process and strength equations. The predicted failure strength compares very well with experimental results, proving that the rational analysis and design of RC corbels are possible by using the present study's strut and nodal zone strengths. Doi: 10.28991/cej-2021-03091725 Full Text: PDF
Comparative Analytical Study on Crack Width of Reinforced Concrete Structures Ahmed A. Abu El Naas; Hany M. El Hashimy; Khaled F. El Kashif
Civil Engineering Journal Vol 7, No 7 (2021): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091720

Abstract

This paper presents a comparative study for the cracking limit state according to design codes. It aims mainly to connect research findings with design code equations. Appropriate recommendations are reached and the various factors and parameters influencing crack width investigated. The most appropriate equation for crack width calculation can be found. This is done by creating an analytical and numerical program studied various factors and parameters affecting on the crack width. The Analytical study includes some variables affecting the crack width such as steel stress, concrete cover, flexural reinforcement ratio and rebar arrangement. A 3-D finite element analysis by ABAQUS were used to model and idealize the problem. The numerical results were compared with the analytical results. It was concluded that some codes did not take into account the impact of some major variables and cases on the crack width. Also, it was found that some codes are not clear in the region concerning the position of the crack width calculation and the values obtained for the crack width. For calculating crack width values, JSCE (2007) equation is the most appropriate equation as it takes into account the main parameters that affect crack width. Doi: 10.28991/cej-2021-03091720 Full Text: PDF
Influence of Highway Traffic on Contamination of Roadside Soil with Heavy Metals Benabid Abderrahmane; Benmbarek Naima; Mansouri Tarek; Merdas Abdelghani
Civil Engineering Journal Vol 7, No 8 (2021): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091736

Abstract

This study is one of the first works which examined the assessment of heavy metal contamination of pavement-side soils in Algeria. It deals with the section of National Highway 3 (RN3), which crosses the wilaya of Batna. In the environment of sampling sites there is no industry or dangerous activity on the environment, the heavy metals addressed in this study are (Pb, Cu, Cr, Fe, Ni, Zn), their origin being road traffic. The objectives of this study were to: (1) Determine the concentrations of heavy metals in road dust; (2) Identify the sources of different heavy metals in soils and road dust; (3) Exploring the extent of heavy metal pollution in neighbouring soils. To this end, 33 samples were collected, including 03 road dust and 30 soil samples over different distances from 1m to 80m. The samples were analyzed by FRX. Results indicated that concentrations in road dust were higher than in soil. The distribution of heavy metal concentrations in dust is Fe>Pb>Zn>Cu>Cr>Ni, and the distribution in the ground is Fe>Pb>Cu>Zn>Cr>Ni in the direction of Biskra and in the opposite direction and decreases away from the road, while the distribution in the central solid ground is Fe> Cu>Cr>Pb>Zn>Ni. Climatic conditions such as wind, rainfall, temperature, humidity and the nature of the terrain were also significantly related to their enrichment in these roadside soils. The enrichment factor (EF) and the geo-accumulation index (Igeo) were calculated, as well as all elements with a (EF) that ranges from moderate to high to extremely contaminated, reflecting the high anthropogenic load of these metals in the study area and the results of the Igéo accumulation indices confirm the results obtained for the enrichment factor (EF). Doi: 10.28991/cej-2021-03091736 Full Text: PDF
A Comparison of Multiple Imputation Methods for Recovering Missing Data in Hydrological Studies Fatimah Bibi Hamzah; Firdaus Mohd Hamzah; Siti Fatin Mohd Razali; Hafiza Samad
Civil Engineering Journal Vol 7, No 9 (2021): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091747

Abstract

Missing data is a common problem in hydrological studies; therefore, data reconstruction is critical, especially when it is crucial to employ all available resources, even incomplete records. Furthermore, missing data could have an impact on statistical analysis results, and the amount of variability in the data would not be fittingly anticipated. As a result, this study compared the performance of three imputation methods in predicting recurrence in streamflow datasets: robust random regression imputation (RRRI), k-nearest neighbours (k-NN), and classification and regression tree (CART). Furthermore, entire historical daily streamflow data from 2012 to 2014 (as training dataset) were utilised to assess and validate the effectiveness of the imputation methods in addressing missing streamflow data. Following that, all three methods coupled with multiple linear regression (MLR), were used to restore streamflow rates in Malaysia's Langat River Basin from 1978 to 2016. The estimation techniques effectiveness was evaluated using metrics inclusive of the Nash-Sutcliffe efficiency coefficient (CE), root-mean-square error (RMSE), and mean absolute percentage error (MAPE). The results confirmed that RRRI coupled with MLR (RRRI-MLR) had the lowest RMSE and MAPE values, outperforming all other techniques tested for filling missing data in daily streamflow datasets. This indicates that the RRRI-MLR is the best method for dealing with missing data in streamflow datasets. Doi: 10.28991/cej-2021-03091747 Full Text: PDF
The Cognition Role to Understanding Planning and Architectural Production Ahmed S. Al-Khafaji; Nadia A. Al-Salam; Tuqa R. Alrobaee
Civil Engineering Journal Vol 7, No 7 (2021): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091715

Abstract

This paper focuses on the concept of cognition and its clarification in the light of Islamic epistemology. Knowledge passes through two essential parts: conception and assent. Conception explains simple knowledge, while assent explains knowledge involving a judgment. The paper proceeded with the identification of the problem of relationship blurring between cognition and knowledge. The external and inner senses have explained the relationship between the stages of knowledge and cognition. The external senses receive stimuli and form primary conceptions. These conceptions transfer to the first part of the inner senses, which is common sense; it collects the sensations and transmits them to pictorial power. Secondary conceptions are formed, accompanied by feeling. Then, the estimative power role emerges in imparting meaning to be stored in memory, here knowledge is suspicion, and the perception is achieved. Finally, the images reach the thinking power to impart the specific meaning of the image, which constitutes cognition. Using the Hagia Sophia Case Study, the paper reached important indices in clarifying the cognition stages and understanding of planning and architectural production. These indices were represented by: color, scale, lighting, the harmony of the building with its surroundings, and the meanings associated with cultural, social, and civilized values. Doi: 10.28991/cej-2021-03091715 Full Text: PDF
The Early Age Strength Improvement of the High Volume Fly Ash Mortar Kaoutar Bazzar; Fatima Zahra Hafiane; Adil Hafidi Alaoui
Civil Engineering Journal Vol 7, No 8 (2021): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091731

Abstract

In the last decade, the use of Fly ash as replacement to improve the strength and performance of the cement has become a part of mortar and concrete manufacturing. When the used amount of fly ash ranges from 20 to 25%, the proprieties of concrete and mortars such as strength and durability are improved, which also reduce the Portland cement consumption and its impact on environment. For some special applications the High-Volume Fly Ash (HVFA) (up to 50%) is recommended, but the use of HVFA is still limited because of the low early age strength. The aim of this study is to overcome the constraints caused by the use of the High-Volume Fly Ash, by upgrading the mortar using grinding to reduce the particle size, and by the application of an upsetting force to modify the behavior of swelling and to modify the crystal structure of ettringite in order to increase the early age strength of the mortar. The results show an increase in the rupture resistance at 7 days and 28 days by 60% and 30% respectively. Which will make the use of HVFA mortar possible in construction industry and therefore reduce more CO2 emissions from the cement production. Doi: 10.28991/cej-2021-03091731 Full Text: PDF
Numerical Modeling of Soil Erosion with Three Wall Laws at the Soil-Water Interface El Assad, Hatim; Kissi, Benaissa; Hassan, Rhanim; Angel, Parron Vera Miguel; Dolores, Rubio Cintas Maria; Chafik, Guemimi; Kacem-Boureau, Mariem
Civil Engineering Journal Vol 7, No 9 (2021): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091742

Abstract

In the area of civil engineering and especially hydraulic structures, we find multiple anomalies that weakens mechanical characteristics of dikes, one of the most common anomalies is erosion phenomenon specifically pipe flow erosion which causes major damage to dam structures. This phenomenon is caused by a hole which is the result of the high pressure of water that facilitate the soil migration between the two sides of the dam. It becomes only a question of time until the diameter of the hole expands and causes destruction of the dam structure. This problem pushed physicist to perform many tests to quantify erosion kinetics, one of the most used tests to have logical and trusted results is the HET (hole erosion test). Meanwhile there is not much research regarding the models that govern these types of tests. Objectives: In this paper we modeled the HET using modeling software based on the Navier Stokes equations, this model tackles also the singularity of the interface structure/water using wall laws for a flow turbulence. Methods/Analysis: The studied soil in this paper is a clay soil, clay soil has the property of containing water more than most other soils. Three wall laws were applied on the soil / water interface to calculate the erosion rate in order to avoid the rupture of such a structure. The modlisitation was made on the ANSYS software. Findings: In this work, two-dimensional modeling was carried of the soil.in contrast of the early models which is one-dimensional model, the first one had shown that the wall-shear stress which is not uniform along the whole wall. Then using the linear erosion law to predict the non-uniform erosion along the whole length. The previous study found that the wall laws have a significant impact on the wall-shear stress, which affects the erosion interface in the fluid/soil, particularly at the hole's extremes. Our experiment revealed that the degraded profile is not uniform. Doi: 10.28991/cej-2021-03091742 Full Text: PDF
Effect of Fiber, Cement, and Aggregate Type on Mechanical Properties of UHPC Shahrokhinasab, Esmail; Looney, Trevor; Floyd, Royce; Garber, David
Civil Engineering Journal Vol 7, No 8 (2021): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091726

Abstract

Ultra-High Performance Concrete (UHPC) is a new class of concrete that differentiates itself from other concrete materials due to its exceptional mechanical properties and durability. It has been used in structural rehabilitation and accelerated bridge construction, structural precast applications, and several other applications in the past decades. The mechanical properties of UHPC include compressive strength greater than 124 MPa (18 ksi) and sustained post cracking tensile strength greater than 5 MPa (0.72 ksi) when combined with steel, synthetic or organic fibers. Proprietary, pre-bagged mixtures are currently available in the market, but can cost about 20 times more than traditional concrete. This high price and the unique mixing procedure required for UHPC has limited its widespread use in the US and has motivated many researchers to develop more economical versions using locally available materials. The objective of this study was to investigate the effect of different proportions of typical UHPC mixture components on the mechanical properties of the mixtures. Particle packing theory was used to determine a few optimal mixture proportions and then modifications were made to investigate the effect. A compressive strength of around 124 MPa (18 ksi) was achieved without using any quartz particles in the mixture design. Doi: 10.28991/cej-2021-03091726 Full Text: PDF
Optimization of Cellular Concrete Formulation with Aluminum Waste and Mineral Additions Bouglada, Mohammed Salah; Ammar, Noui; Larbi, Belagraa
Civil Engineering Journal Vol 7, No 7 (2021): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091721

Abstract

The paper aims to study cellular concrete with a new approach of formulation without an autoclave, with the use of aluminum waste and incorporation of mineral additions into the sand and evaluate its physical and mechanical properties. In this experimental study, two types of cellular concrete are prepared, based on crushed and dune sand with the incorporation of 15% of the slag and 10% of pozzolana, as sand replacement. An experimental program was performed to determine the compressive strength at 28 days, the density and thermal conductivity of the confected cellular concrete. The obtained results showed that concretes prepared with crushed sand developed better mechanical resistance compared to the dune sand. It is also noted that the concretes containing the mineral additions provide a substantial increase in compressive strength in particular slag. Furthermore, cellular concretes with sand dunes offer better thermal conductivity, compared to those with crushed sand. The use of the additions reduces the Water/Binder (W/B) ratio and leads to a lower thermal conductivity regardless of the used sand nature. The outcome of the present study here in could present a modest contribution for the production of cellular concrete with local materials in particular dune sand, active mineral addition and aluminum waste. The physical and mechanical properties obtained from this new composition are estimated acceptable compared to those of the industry-prepared cellular concrete product. Doi: 10.28991/cej-2021-03091721 Full Text: PDF
Optimization of the Ultimate Bearing Capacity of Reinforced Soft Soils through the Concept of the Critical Length of Stone Columns Boumekik, Nour El Islam; Labed, Mohamed; Mellas, Mekki; Mabrouki, Abdelhak
Civil Engineering Journal Vol 7, No 9 (2021): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091737

Abstract

The objective of this paper is to develop an analytical equation based on the concept of the critical-length of columns in order to optimize the ultimate bearing-capacity of soft soils, supporting a strip footing and reinforced by a group of floating stone columns. Optimization procedure was performed on three-dimensional numerical models simulated on the Flac3D computer code, for various soft-soils with different undrained-cohesions (Cu=15–35kPa), reinforced by columns of varying lengths (L) and area replacement ratio (As=10-40%), considering different footing widths B. Obtained results indicate that the optimal bearing-capacity ratio (Ultimate bearing-capacity of reinforced soil/unreinforced soil) is reached for the column critical-length ratio (Lc/B) and increase with increase of the later ratio, depending  on As and Cu. Analysis of results also showed that the optimal values of the bearing-capacity ratio in the reinforced soils remain bounded between the lower and higher values (1.28-2.32), respectively for minimal and maximal values of the critical-length ratio (1.1) and (4.4). Based on these results, a useful analytical equation is proposed by the authors, for the expression of the critical-length; thus ensuring an optimal pre-dimensioning of the stone columns. The proposed equation was compared with the data available in the literature and showed good agreement. Doi: 10.28991/cej-2021-03091737 Full Text: PDF

Page 93 of 185 | Total Record : 1848


Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue