cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Numerical Investigation of Stress Block for High Strength Concrete Columns Nizar Assi; Husain Al-Gahtani; Mohammed A. Al-Osta
Civil Engineering Journal Vol 6, No 5 (2020): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091522

Abstract

This paper is intended to investigate the stress block for high strength concrete (HSC) using the finite element model (FEM) and analytical approach. New stress block parameters were proposed for HSC including the stress intensity factor (α1) and the depth factor (β1) based on basic equilibrium equations. A (3D) finite element modeling was developed for the columns made of HSC using the comprehensive code ABAQUS. The proposed stress parameters were validated against the experimental data found in the literature and FEM. Thereafter, the proposed stress block for HSC was used to generate interaction diagrams of rectangular and circular columns subjected to compression and uniaxial bending. The effects of the stress block parameters of HSC on the interaction diagrams were demonstrated. The results showed that a good agreement is obtained between the failure loads using the finite element model and the analytical approach using the proposed parameters, as well as the achievement of a close agreement with experimental observation. It is concluded that the use of proposed parameters resulted in a more conservative estimation of the failure load of columns. The effect of the stress depth factor is considered to be minor compared with the effect of the intensity factor.
An Investigation of the Fundamental Period of Vibration for Moment Resisting Concrete Frames Ahmed Nader Mohamed; Khaled F. El Kashif; Hamed M. Salem
Civil Engineering Journal Vol 5, No 12 (2019): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2019-03091438

Abstract

The determination of fundamental period of vibration for structures is essential to earthquake design. The current codes provide empirical formulas to estimate the approximated fundamental period and these formulas are dependent on building material, height of structure or number of stories. Such a formulation is excessively conservative and unable to account for other parameters such as: length to width ratios, vertical element size and floors area. This study investigated the fundamental periods of mid-rise reinforced concrete moment resisting frames. A total of 13 moment resisting frames were analyzed by ETABS 15.2.2, for gross and cracked eigenvalue analysis and Extreme Loading for Structures Software® or ELS, for non-linear dynamic analysis. The estimated periods of vibration were compared with empirical equations, including current code equations. As expected, the results show that building periods estimated based on simple equations provided by earthquake design codes in Europe (EC8) and America (UBC97 and ASCE 7-10) are significantly smaller than the periods computed using nonlinear dynamic analysis. Based on the results obtained from the analyzed models, equations for calculating period of vibration are proposed. These proposed equations will allow design engineers to quickly and accurately estimate the fundamental period of moment resisting frames with taking different length to width ratios, vertical element size, floors area and building height into account. The interaction between reduction factor and the reduced period of vibration is studied, and it is found that values of maximum period of vibration can be used as an alternative method to calculate the inelastic base shear value without taking reduction factors in consideration.
Buckling of Radially Loaded Concrete Cylinders in Fire Condition Abdelraouf Tawfik Kassem
Civil Engineering Journal Vol 5, No 6 (2019): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2019-03091326

Abstract

Concrete cylinders are commonly used in water treatment and sewerage plants, in the form of wells or basins. They are mainly subjected to axial compression resulting from soil lateral pressure and aqueous hydrostatic pressure, in case of the presence of a groundwater table; that is why they are mostly designed in the form of a circular hollow section. Concrete cylinders face a complicated case of loading in fire condition, as a result of material degradation in addition to thermally induced stresses. This paper studies buckling stability of that case where, a concrete cylinder is subjected to an internal fire load in addition to superimposed structural loads from the surrounding environment. The main objective of the research is to study buckling stability of concrete cylinders through identifying various structural and thermal parameters, controlling that behaviour. Finite element modelling using "Ansys 18.1" has been chosen as an approach to deal with the research problem. Twenty-five solid elements models have been prepared to study both thermal and structural behaviour of concrete cylinders in fire condition. Cylinder thickness, slenderness ratio, load ratio, and groundwater presence have been adopted as main research parameters to identify their effect on well's fire buckling endurance, in accordance with ISO 834 standard fire curve. A parametric study has been designed to study fire endurance vulnerability to cylinder thickness ranging from 50 mm up to 800 mm; diameter to thickness ratio [D/t] ranging from "10" up to "160"; full spectrum of structural load ratios; in addition to the presence of a surrounding groundwater. Outputs of the parametric study have been introduced in the form of figures, which could be used as preliminary design aids to identify buckling fire endurance as function of load ratio for various spectrums of thickness and slenderness ratios. Moreover, critical thicknesses and load ratios have been revealed.
The Effects of Weather on Passenger Flow of Urban Rail Transit Wang, Xiaoyuan; Guo, Yongqing; Bai, Chenglin; Liu, Shanliang; Liu, Shijie; Han, Junyan
Civil Engineering Journal Vol 6, No 1 (2020): January
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091449

Abstract

Predicting passenger flow on urban rail transit is important for the planning, design and decision-making of rail transit. Weather is an important factor that affects the passenger flow of rail transit by changing the travel mode choice of urban residents. This study aims to explore the influence of weather on urban rail transit ridership, taking four cities in China as examples, Beijing, Shanghai, Guangzhou and Chengdu. To determine the weather effect on daily ridership rate, the three models were proposed with different combinations of the factors of temperature and weather type, using linear regression method.   The large quantities of data were applied to validate the developed models.  The results show that in Guangzhou, the daily ridership rate of rail transit increases with increasing temperature. In Chengdu, the ridership rate increases in rainy days compared to sunny days. While, in Beijing and Shanghai, the ridership rate increases in light rainfall and heavy rainfall (except moderate rainfall) compared to sunny days. The research findings are important to understand the impact of weather on passenger flow of urban rail transit. The findings can provide effective strategies to rail transit operators to deal with the fluctuation in daily passenger flow.
Compressive Strength and Elastic Modulus of Slurry Infiltrated Fiber Concrete (SIFCON) at High Temperature Ali Mudhafar Hashim; Mohammed Mansour Kadhum
Civil Engineering Journal Vol 6, No 2 (2020): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091469

Abstract

SIFCON is a special type of fiber reinforced concrete (FRC) with an unattached fiber matrix that gives the composite matrix important tensile properties and, due to its high fiber content, SIFCON also has distinctive and unique ductility and energy absorption properties. Higher temperature resistance is one of the most important parameters affecting the durability and service life of the material. In this research, the compression strength and elastic modulus of Slurry Infiltrated Fiber Concrete (SIFCON) were tested both before and after exposure to high temperatures. Two fire exposure durations of 2 and 3 hours are examined. In addition to room temperatures, three temperature ranges of 400 ° C, 600 ° C and 900 ° C have been introduced. The results of the experiment showed that the compressive strength and elastic modulus decreased after exposure to high temperatures. The drastically reduction of compressive strength took place with increasing temperature above 600 °C. While, the reduction in elastic modulus values is more significant than the decrease in compressive strength at the same fire flame temperatures. The residual compressive strength and elastic modulus at 900 °C were in the range of (52.1% to 59.6%) and (30.6% to 34.1%) respectively.
A Case Study on The Mechanical and Durability Properties of a Concrete Using Recycled Aggregates Khaoula Naouaoui; Toufik Cherradi
Civil Engineering Journal Vol 7, No 11 (2021): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091768

Abstract

In Morocco, Recycled Aggregate Concrete (RAC) is not promoted unlike developed countries like France, Canada, US and many others. This article aims to present a Moroccan study related to the characterization of RAC and compare it with several studies all over the world. It focuses on compressive strength as the main mechanical characteristic and the porosity as the physical property that affects durability. The protocol is based on crushing concrete from demolished building and producing aggregates that are used in making experimental samples of RAC with different percentages of replacing Natural Aggregates (NA) by recycled ones. The first part of experimental study is to determine compressive strength of these samples after 7, 21, 28 and 90 days of confectioning it. Test results prove that above 25% of replacement level, the compression drops considerably and the Recycled Aggregates (RA) can’t replace the naturel ones. The second part of studies focuses on studying porosity as indicator of durability according to the performance approach. It concludes that the RAC may be used in a construction with a required life of 100 years specially building and roads. For high standards constructions or construction in a specific environment, more studies should be done. Doi: 10.28991/cej-2021-03091768 Full Text: PDF
The Porosity of Stabilized Earth Blocks with the Addition Plant Fibers of the Date Palm Abdelghani Idder; Abdelmadjid Hamouine; Boudjemaa Labbaci; Rabia Abdeldjebar
Civil Engineering Journal Vol 6, No 3 (2020): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091485

Abstract

This work is an experimental study to analyze the physical behavior of Stabilized Earth Block (SEB) and reinforced with Plant Fibers of the Date Palm (PFDP). This is part of the valorization of local building materials (earth, fiber) and contributes to reduce the price of housing. Initially, physical tests (Density, Total Water Absorption, and Capillary Absorption) were carried out in preparation for the porosity study. However, the main objective of this study is the investigation of porosity phenomenon using several methods as well as the total porosity estimation, the total volume porosity in water and Open porosity methods, where the mechanical resistance is also considered.  In order to improve the stabilized earth block porosity analyses, various dosages are proposed for cement, lime and fiber. Thus (0%, 5%, 10%) of cement, (0%, 5%, 10%) of lime and the combination (5% cement + 5% lime) with (0%, 0.25%, and 0.5%) of fibers for each composition. The experimental results showed that the addition of fibers increases the porosity of the stabilized earth block proportionally and an increasing quantity of the stabilizer reduces the porosity of the SEB, cement is also more effective at closing pores than lime. Moreover, the compositions 10% cement and the mixture of 5% cement + 5% lime with 0% fiber showed a good results of porosity, for this reason they can be used as a durable building material and good resistance to natural and chemical aggression.
Effect of Fly Ash and Un-crushed Coarse Aggregates on Characteristics of SCC Muneeb Ayoub Memon; Noor Ahmed Memon; Bashir Ahmed Memon
Civil Engineering Journal Vol 6, No 4 (2020): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091501

Abstract

This research paper discusses the change in the workability and strength characteristics of Self Compacting Concrete (SCC) due to addition of fly-ash and use of un-crushed Coarse Aggregate (CA). Laboratory based experimental work was carried out by preparing 12 SCC mixtures among which six mixtures contained crushed aggregate and other six mixtures contained un-crushed coarse aggregate. A total of 550 kg/m3 binder content and fixed Water-Binder (W/B) ratio as 0.35 were used. Two mixtures were controlled by using Portland Cement (PC) and other ten mixtures contained PC and Fly Ash (FA). Slump flow time, slump flow diameter and J-ring height tests were conducted to study the fresh properties of SCC. Furthermore, compressive strength was calculated at 7, 14 and 28 days of curing. The outcomes indicated that the slump flow time, slump flow diameter and J-Ring height for all the mixes are within the limits specified by EFNARC guidelines. The compressive strength of SCCs depends upon dosage of fly ash. Compressive strength for SCCs with crushed CA was better than obtained in case of un-crushed CA. The maximum compressive-strengths were observed as 64.58 MPa and 58.05 MPa for SCC with crushed and un-crushed CA respectively.
Development of Filters with Minimal Hydraulic Resistance for Underground Water Intakes A. A. Akulshin; N. V. Bredikhina; An. A. Akulshin; I. Y. Aksenteva; N. P. Ermakova
Civil Engineering Journal Vol 6, No 5 (2020): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091517

Abstract

The development of modern structures of water wells filtering equipment with enhanced performance characteristics is a vital task. The purpose of this work was to create filters for taking water from underground sources that have high performance, long service life, quickly and economically replace or repair in case of performance loss. The selection of the filter device must be made taking into account all the geological features of the aquifers, the performance characteristics of the filter devices and the size of the future structure. Filter equipment designs for water intake wells have been developed in this study. These filters have low hydraulic resistance, high performance and are easy to repair. This article presents the dependency of flow inside the receiving part of the well, the dependence of filter resistance at various forms of the cross section of the filter wire and the selected optimal section. The paper proposes a method for selecting the optimal cross-section of the filter wire used in the manufacture of a water well filter. The proposed structures of easy-to-remove well filters with increased productivity allow replacing the sealed well filter with a new one easily, reducing capital and operating costs, and increasing the inter-repair periods of their operation. Based on the presented method, examples are given for selecting the parameters of the filter wire cross-section. The above calculations showed that the use of the hydraulic resistance criterion at the design stage of underground water intakes can significantly reduce the cost of well construction. Studies have found that the minimum hydraulic resistance to ensure maximum filter performance is achieved when using filter wire teardrop and elliptical shapes.
Creation and Spatial Analysis of 3D City Modeling based on GIS Data Heba K. Khayyal; Zaki M. Zeidan; Ashraf A. A. Beshr
Civil Engineering Journal Vol 8, No 1 (2022): January
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-01-08

Abstract

The 3D city model is one of the crucial topics that are still under analysis by many engineers and programmers because of the great advancements in data acquisition technologies and 3D computer graphics programming. It is one of the best visualization methods for representing reality. This paper presents different techniques for the creation and spatial analysis of 3D city modeling based on Geographical Information System (GIS) technology using free data sources. To achieve that goal, the Mansoura University campus, located in Mansoura city, Egypt, was chosen as a case study. The minimum data requirements to generate a 3D city model are the terrain, 2D spatial features such as buildings, landscape area and street networks. Moreover, building height is an important attribute in the 3D extrusion process. The main challenge during the creation process is the dearth of accurate free datasets, and the time-consuming editing. Therefore, different data sources are used in this study to evaluate their accuracy and find suitable applications which can use the generated 3D model. Meanwhile, an accurate data source obtained using the traditional survey methods is used for the validation purpose. First, the terrain was obtained from a digital elevation model (DEM) and compared with grid leveling measurements. Second, 2D data were obtained from: the manual digitization from (30 cm) high-resolution imagery, and deep learning structure algorithms to detect the 2D features automatically using an object instance segmentation model and compared the results with the total station survey observations. Different techniques are used to investigate and evaluate the accuracy of these data sources. The procedural modeling technique is applied to generate the 3D city model. TensorFlow & Keras frameworks (Python APIs) were used in this paper; moreover, global mapper, ArcGIS Pro, QGIS and CityEngine software were used. The precision metrics from the trained deep learning model were 0.78 for buildings, 0.62 for streets and 0.89 for landscape areas. Despite, the manual digitizing results are better than the results from deep learning, but the extracted features accuracy is accepted and can be used in the creation process in the cases not require a highly accurate 3D model. The flood impact scenario is simulated as an application of spatial analysis on the generated 3D city model. Doi: 10.28991/CEJ-2022-08-01-08 Full Text: PDF

Page 98 of 185 | Total Record : 1848


Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue