cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Chemistry
ISSN : 14119420     EISSN : 24601578     DOI : -
Indonesian Journal of Chemistry is an International, peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry including applied chemistry. The journal is accredited by The Ministry of Research, Technology and Higher Education (RISTEKDIKTI) No : 21/E/KPT/2018 (in First Rank) and indexed in Scopus since 2012. Since 2018 (Volume 18), Indonesian Journal of Chemistry publish four issues (numbers) annually (February, May, August and November).
Arjuna Subject : -
Articles 30 Documents
Search results for , issue "Vol 19, No 1 (2019)" : 30 Documents clear
Major Ions for Tracing Leachate Migration within Shallow Groundwater in the Vicinity of Municipal Landfill in Bantar Gebang - Bekasi Evarista Ristin Pujiindiyati; Satrio Satrio; Rasi Prasetio
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (451.189 KB) | DOI: 10.22146/ijc.25702

Abstract

Bantar Gebang landfill located in Bekasi regency is a biggest sanitary landfill in Indonesia which comes up some refusals from local people because of its bad impact on their environment. Major ion contents in leachate and fresh groundwater were investigated during the rainy and dry season to determine contamination by leachate released from Bantar Gebang and Sumur Batu landfill. Leachate contained high concentrations of all major ions that was mainly characterized as a NaKHCO3 water type. On the other hand, most fresh groundwater samples were predominated by CaMgHCO3 and CaMgCl water type. Concentrations of K+, Ca2+, Mg2+, Na+, SO42-, Cl-, HCO3- and NO3- in leachate were to be in a maximum factor of 2110; 7; 6; 143; 20; 112; 349 and 20, respectively than its contents in groundwater. Leachate from Bantar Gebang was detected have a higher concentration than those contained in Sumur Batu that was probably due to its mature leachate. An estimated mixture of leachate to fresh water in monitoring wells (5 m and 15 m depth) was in the range of 20 to 34%, related to Na+ and Cl- signatures, while the shallow groundwater located in residents in the vicinity of these landfills exhibited maximum leachate about 2%.
Complex Synthesis of Cis-[Pt(Asc) (NH3)2] and its Effect on Human Breast Cancer MCF-7 Cell in vitro Mohammed A. Al-Dolaymi; Khalid F. Al-Rawi; Firas T. Al-Shamary; Mohammad M.F. Al-Halbosiy
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (229.068 KB) | DOI: 10.22146/ijc.35628

Abstract

Bosom malignancy is the most regularly analyzed disease and the imperative reason for growth-related passing among ladies, accounting for 23% of all new tumor cases and 14% of tumor passing's. L-Ascorbic acid, commonly known as vitamin C is well-known in chemistry since long back. It has tremendous medical applications in several diseases. Therefore, in this paper five concentrations of complex cis-[Pt(Asc)(NH3)2] where Asc=L-ascorbic acid derivative on MCF-7 cell line to detect the changes in five cellular parameters (nuclear intensity, mitochondrial membrane potential, valid cell count, cytochrome C, and membrane permeability) after exposure with 24 h are investigated. The results showed that 400 μg/mL has the highest significant effect on the five parameters (nuclear intensity, mitochondrial membrane potential, valid cell count, cytochrome C, and membrane permeability) when compared with Doxorubicin 20 μM (substance used as anti-cancer) which represent the positive control. Also, the 200 μg/mL showed results close to those of the untreated cells which represent the negative control (-ve) with a very few significant differences.
The Effects of the Blending Condition on the Morphology, Crystallinity, and Thermal Stability of Cellulose Microfibers Obtained from Bagasse Romi Sukmawan; Lestari Hetalesi Saputri; Rochmadi Rochmadi; Heru Santoso Budi Rochardjo
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (468.284 KB) | DOI: 10.22146/ijc.31051

Abstract

In this study, cellulose microfibers were isolated from bagasse fibers in three stages. Initially, the fibers were treated with 5 wt.% NaOH solution followed by bleaching with 5 wt.% H2O2 in an alkali condition (pH 11) to remove hemicelluloses and lignin. Whole cellulosic fibers were obtained by mechanically separating the fibers using a modified kitchen blender to produce cellulose microfibers. Morphological (Scanning Electron Microscopy (SEM)) and structural analysis of the treated fiber was performed using Fourier Transformed Infrared (FTIR) spectroscopy and X-ray Diffraction (XRD). Morphological characterization identified that the diameter of the fibers varied between 20 nm to 20 µm and the FTIR analysis demonstrated that the treatments resulted in the gradual removal of lignin and hemicelluloses from the fiber. Furthermore, the XRD studies revealed that the combination of the chemical and mechanical treatment is an effective way to increase purity of cellulose (removal of amorphous lignin and hemicellulose) and break down the microfiber into shorter crystalline parts with higher crystallinity (77.25%) than raw bagasse (40.54%). Accordingly, changing the agitation time revealed that the cellulose crystallite size in the sample varied slightly with agitation time by using a blender (3.35 nm). Finally, the higher crystallinity and crystallite size improved the thermal stability of the cellulose microfiber confirming their suitability in the manufacturing biomaterial composites.
The Pattern of Heavy Metals Distribution in Time Chronosequence of Ex-Tin Mining Ponds in Bangka Regency, Indonesia Andri Kurniawan; Oedjijono Oedjijono; Tamad Tamad; Uyi Sulaeman
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (307.544 KB) | DOI: 10.22146/ijc.33613

Abstract

The heavy metals distribution of ex-tin mining ponds were investigated. The time chronosequence was determined at the pond of age < 1 year (Station A), the pond of age 5–10 years (Station B), and the pond of age > 15 years (Station C). The results showed sixteen heavy metals of As, Co, Cu, Cr, Fe, Ga, Hf, Sn, Ta, Te, Th, Mn, Ni, Pb, Zn, and V could be detected in the ponds. The metals such as As, Co, Cu, Ga, Mn, Ni, Pb, Th, and Zn in Station C showed higher concentration compared to the Station A and Station B. The metals such as Cr, Fe, Hf, Sn, Ta, Te, and V in Station A and Station B showed higher concentration compared to the Station C. The positive, negative, and dynamic correlation pattern could be found in distribution of heavy metal to time chronosequence. The concentration of Ta and V showed a positive correlation because their concentration decrease, whereas concentration of As, Cu, Ga, Mn, and Zn showed a negative correlation because their concentration increase along in time chronosequence. The dynamic correlation could be found that concentration of Co, Ni, Pb, Sn, and Th decrease from Station A to Station B and then increase in Station C, whereas concentration of Cr, Fe, Hf, and Te increase from Station A to Station B and then decrease in Station C.
The Chemometrics Techniques in Combination with Instrumental Analytical Methods Applied in Halal Authentication Analysis Abdul Rohman; Anggita Rosiana Putri
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (209.111 KB) | DOI: 10.22146/ijc.28721

Abstract

Halal food is taken into account as any food permitted to be consumed by Muslim according to Syariah law. Due to the development of science and technology in which some new food components such as food additives have been synthesized and produced, some industries used non-halal components such as pig derivatives in food products to reduce the production cost. Non-halal components added in food products are difficult to detect visually due to the close similarity between non-halal ingredients and components present in food. As a consequence, some scientists developed and proposed some instrumental techniques like spectroscopy, chromatography and molecular biology-based methods for identification of non-halal components. Food matrix is very complex to be analyzed. Therefore, the signals obtained during chemical and biological analyses are very complex which are difficult to interpret. Fortunately, a statistical technique called with chemometrics can be used an alternative method to handle the complex data met during analysis of non-halal components. Chemometrics has been widely used in many aspects of analysis in many types of the sector. In this review, some chemometrics techniques used to treat responses obtained from instrumental measurements intended for analysis of non-halal components in food matrix were highlighted.
Degradation of Blue KN-R Dye in Batik Effluent by an Advanced Oxidation Process Using a Combination of Ozonation and Hydrodynamic Cavitation Eva Fathul Karamah; Pristi Amalia Nurcahyani
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (250.392 KB) | DOI: 10.22146/ijc.26733

Abstract

The popularity of batik has been increasing since it was declared as a world cultural heritage by UNESCO in 2009. Correspondingly, the content of textile dyes in textile industry wastewater is also increased. These dyes contain functional groups which make them quite stable in the environment and causes pollution. In this work, degradation of 100 ppm Blue KN-R has been investigated using ozonation, hydrodynamic cavitation, and a combination of the two for 60 min. The three configuration methods were optimized in terms of different operating parameters, namely flowrate, initial pH and dosage of ozone, to obtain the maximum degradation of Blue KN-R. It was found that the highest decolorization level for a single method was 70.16% for the single ozonation process at pH 11 and 156.48 mg/h of ozone and 1.79% for the single hydrodynamic cavitation process at pH 4. The highest decolorization level was 79.39%, achieved by the combination at pH 11 and 156.48 mg/h of ozone. The mineralization level in the form of a percentage of Total Organic Carbon (TOC) removal by ozonation, hydrodynamic cavitation, and their combination was 14.81, 1.85, and 19.9%, respectively. Due to its better performance, degradation of Blue KN-R was conducted by the hybrid method for 120 min, resulting in 92.63% of decolorization and 24.54% of TOC removal. The degree of synergetic decolorization and mineralization was due to the mechanical and chemical effect of hydrodynamic cavitation in increasing ozone solubility and production of hydroxyl radicals. Degradation of batik effluent has been investigated in optimum conditions for 120 min. The color, COD, BOD, and TSS removal were 67.96, 68.72, 66.54, and 79.84%, respectively.
Bioconversion of Glycerol to Biosurfactant by Halophilic Bacteria Halomonas elongata BK-AG18 Mieke Alvionita; Rukman Hertadi
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (272.496 KB) | DOI: 10.22146/ijc.26737

Abstract

The increasing production of biodiesel is typically followed by the increasing number of glycerol as co-product. The abundance of glycerol will cause an environmental problem since it can be used as the carbon source for bacterial growth including pathogenic bacteria. In this study, four moderate halophilic bacteria indigenous from Bledug Kuwu Mud Crater, Central Java, Indonesia were screened based on their capability to bioconvert glycerol to biosurfactant. This study found Halomonas elongata BK-AG18 as the potential bacterium that able to perform such bioconversion. The optimum condition for the bioconversion of glycerol into biosurfactant was attained when the bacterial inoculum was grown in the medium containing 2% (v/v) glycerol, 0.3% (w/v) urea, and 5% (w/v) NaCl at 35 °C and pH 6. The resulted biosurfactant has emulsification index (EI24) about 53.6% and CMC about 275 mg/L. Preliminary structural analysis using FTIR and 1H-NMR indicated that biosurfactant produced by H. elongata BK-AG18 was likely a glycolipid type. The biosurfactants have antibacterial activity against Staphylococcus aureus with a minimum inhibitory concentration of 433 mg/L. Our study thus showed that H. elongata BK-AG18 was the potential halophilic bacteria that can bioconvert glycerol into glycolipid type of biosurfactant with antibacterial activity.
Processing of Chloride-Containing Productive Solutions after Uranium in situ Leaching by Ion Exchange Method Svetlana Titova; Sergey Skripchenko; Alexey Smirnov; Vladimir Rychkov
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (176.458 KB) | DOI: 10.22146/ijc.34460

Abstract

The uranium sorption from productive solutions containing chloride ions using anion-exchange resins was investigated. The VPAE ion exchanger had the highest values of the sorption capacity, which for the experiment in the static mode was 13 kg U m-3, and for the experiment in the dynamic mode, it was equal to 36 kg U m-3. The use of VPAE anion exchanger will make it possible for uranium recovery from productive solutions with an increased content of chloride without sacrificing the productivity of the sorption plant. The process of saturated resins regeneration by various reagents was investigated. The use of ammonium nitrate solution with sulfuric acid ensured maximum value of uranium recovery from the saturated resin phase (76–97%).
Separation of Inorganic Anions and Phenolic Compounds Using Tetraethylene Oxide-Bonded Stationary Phases in Capillary Liquid Chromatography Roza Linda; Mohamad Rafi; Lee Wah Lim; Toyohide Takeuchi
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (244.776 KB) | DOI: 10.22146/ijc.32237

Abstract

Tetraethylene glycol monomethyl ether (TEGMM) and tetraethylene glycol (TEG) modified silica were synthesized and used in capillary liquid chromatography as stationary phases. The stationary phases were prepared by chemically bonding TEGMM or TEG on silica via reaction with 3-glycidyloxypropyltrimethoxysilane. The present stationary phases were successfully used for the separation of several inorganic anions and phenolic compounds. The TEG-modified silica stationary phase had a better selectivity and higher retention for five anions compared to TEGMM-modified silica stationary phase. The repeatability of retention time for the five anions was satisfactory on both stationary phases. By using 2 mM sodium chloride as eluent, the relative standard deviation values were in ranging from 0.68–3.21 and 2.00–2.16% for analytes in the TEG-and TEGMM-bonded stationary phase, respectively. It was found that the TEG-bonded stationary phase had hydrophilic properties due to the presence of the hydroxyl group at the end of the TEG chains.
Potency of Stirred Microfiltration Cell in Separation of Fermented Beans as Protein Isolate for Natural Source of Folic Acid Aspiyanto Aspiyanto; Agustine Susilowati; Puspa Dewi Lotulung; Hakiki Melanie; Yati Maryati
Indonesian Journal of Chemistry Vol 19, No 1 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (341.382 KB) | DOI: 10.22146/ijc.25164

Abstract

Protein isolate from soy bean (Glycine soja L.) tempeh, mung bean (Phaseolus radiatus L.) tempeh and kidney bean (Phaseolus vulgaris L.) tempeh are natural source of folic acid with main role in brain smartness. 0.15 µm microfiltration (MF) membrane fitted in dead-end stirred microfiltration cell (SMFC) was able to separate protein isolate from three (3) kinds of tempeh at stirrer rotation speed 400 rpm, room temperature and pressure 40 psia for 30 minutes. The result of experimental work showed that SMFC had potential use in separation of protein isolate affected by kinds of bean and membrane performance on isolate composition in retentate and permeate. SMFC was able to retain better protein isolate in retentate than that passing across permeate. Retentate of protein isolate from soy bean tempeh, mung bean tempeh and kidney bean tempeh had subsequently compositions of folic acid 362.07, 254.07 and 506.07 µg/mL, total solids 5.56, 4.08 and 1.82 %, N-Amino 4.34, 3.36 and 0.56 mg/mL, and dissolved protein 0.79, 0.34 and 0.72 mg/mL. In this process condition, SMFC was able to increase folic acid in protein isolate retentate of soy tempeh of 0.59 times, mung bean tempeh of 1.1 times and kydney bean tempeh of 1.42 times before purification process in retentate. Based on both SMFC performance and efficiency, all the best purification optimization were obtained kidney beans tempeh. Identification of monomer of kidney bean tempeh protein isolate gave monomers of folic acid, glutamic acid and folic acid fractionation with molecular weight of 443.5797, 148.1643 and 221.2132 Da. and relative intensity of 1.28, 50.11 and 7.05 %, respectively.

Page 1 of 3 | Total Record : 30


Filter by Year

2019 2019


Filter By Issues
All Issue Vol 25, No 5 (2025) Vol 25, No 4 (2025) Vol 25, No 3 (2025) Vol 25, No 2 (2025) Vol 25, No 1 (2025) Vol 24, No 6 (2024) Vol 24, No 5 (2024) Vol 24, No 4 (2024) Vol 24, No 3 (2024) Vol 24, No 2 (2024) Vol 24, No 1 (2024) Vol 23, No 6 (2023) Vol 23, No 5 (2023) Vol 23, No 4 (2023) Vol 23, No 3 (2023) Vol 23, No 2 (2023) Vol 23, No 1 (2023) Vol 22, No 6 (2022) Vol 22, No 5 (2022) Vol 22, No 4 (2022) Vol 22, No 3 (2022) Vol 22, No 1 (2022) Vol 22, No 2 (2022) Vol 21, No 6 (2021) Vol 21, No 5 (2021) Vol 21, No 4 (2021) Vol 21, No 3 (2021) Vol 21, No 2 (2021) Vol 21, No 1 (2021) Vol 20, No 6 (2020) Vol 20, No 5 (2020) Vol 20, No 4 (2020) Vol 20, No 3 (2020) Vol 20, No 2 (2020) Vol 20, No 1 (2020) Vol 19, No 4 (2019) Vol 19, No 3 (2019) Vol 19, No 2 (2019) Vol 19, No 1 (2019) Vol 18, No 4 (2018) Vol 18, No 3 (2018) Vol 18, No 2 (2018) Vol 18, No 1 (2018) Vol 17, No 3 (2017) Vol 17, No 2 (2017) Vol 17, No 1 (2017) Vol 16, No 3 (2016) Vol 16, No 2 (2016) Vol 16, No 1 (2016) Vol 15, No 3 (2015) Vol 15, No 2 (2015) Vol 15, No 1 (2015) Vol 14, No 3 (2014) Vol 14, No 2 (2014) Vol 14, No 1 (2014) Vol 13, No 3 (2013) Vol 13, No 2 (2013) Vol 13, No 1 (2013) Vol 12, No 3 (2012) Vol 12, No 2 (2012) Vol 12, No 1 (2012) Vol 11, No 3 (2011) Vol 11, No 2 (2011) Vol 11, No 1 (2011) Vol 10, No 3 (2010) Vol 10, No 2 (2010) Vol 10, No 1 (2010) Vol 9, No 3 (2009) Vol 9, No 2 (2009) Vol 9, No 1 (2009) Vol 8, No 3 (2008) Vol 8, No 2 (2008) Vol 8, No 1 (2008) Vol 7, No 3 (2007) Vol 7, No 2 (2007) Vol 7, No 1 (2007) Vol 6, No 3 (2006) Vol 6, No 2 (2006) Vol 6, No 1 (2006) Vol 5, No 3 (2005) Vol 5, No 2 (2005) Vol 5, No 1 (2005) Vol 4, No 3 (2004) Vol 4, No 2 (2004) Vol 4, No 1 (2004) Vol 3, No 3 (2003) Vol 3, No 2 (2003) Vol 3, No 1 (2003) Vol 2, No 3 (2002) Vol 2, No 2 (2002) Vol 2, No 1 (2002) Vol 1, No 3 (2001) Vol 1, No 2 (2001) Vol 1, No 1 (2001) ARTICLE IN PRESS Article in press More Issue