cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Chemistry
ISSN : 14119420     EISSN : 24601578     DOI : -
Indonesian Journal of Chemistry is an International, peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry including applied chemistry. The journal is accredited by The Ministry of Research, Technology and Higher Education (RISTEKDIKTI) No : 21/E/KPT/2018 (in First Rank) and indexed in Scopus since 2012. Since 2018 (Volume 18), Indonesian Journal of Chemistry publish four issues (numbers) annually (February, May, August and November).
Arjuna Subject : -
Articles 1,956 Documents
Preparation, Characterization, and Biological Activity of La(III), Nd(III), Er(III), Gd(III), and Dy(III) Complexes with Schiff Base Resulted from Reaction of 4-Antipyrinecarboxaldehyde and 2-Aminobenzothiazole Kawther Adeeb Hussein; Naser Shaalan; Aliaa Khauon Lafta; Janan Majeed Al Akeedi
Indonesian Journal of Chemistry Vol 24, No 2 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.87262

Abstract

The research includes the preparation of several complexes of the internal transition elements lanthanide (Ln = La, Nd, Er, Gd, and Dy) containing the 4f shell, with Schiff bases resulting from condensation reactions between 4-antipyrinecarboxaldehyde and 2-aminobenzothiazoles. Schiff's base was identified using FTIR spectra, UV-vis spectroscopy, elemental microanalysis CHNSO, nuclear magnetic resonance, mass spectrometry, and TGA thermal analysis. The complexes were studied and identified with elemental microanalysis CHNSO, FTIR spectroscopy, UV-vis spectroscopy, TGA thermal analysis, conductivity measurement, and magnetic sensitivity. The result showed that these complexes were classified as homogeneous bidentate complexes with the general formula of [Ln2(L)2(NO3)6]·6H2O. The physical measurements indicated that the prepared complexes are non-electrolyte and paramagnetic. Some compounds prepared in vitro were evaluated for their antibacterial activity against four types of pathogenic strains Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Klebsiella pneumonia, and using the agar disc spreading method for the evaluation. The results showed that some of these complexes have good antibacterial activity compared to the biological activity of the ligand. Also, the biological activity of Schiff's base and the prepared complexes were evaluated against three types of fungi (Candida albicans, Tropical fungi, and Scandal fungi), and they showed great activity against the prepared complexes.
Synthesis, Structure and Biological Activity Studies of New Metal Ion Complexes Based on 3-[(3-Hydroxynaphthalene-2-yl-ethylidene)-hydrazono]-1,3-dihydro-indol-2-one Safa Sami; Naser Shaalan
Indonesian Journal of Chemistry Vol 24, No 2 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.87359

Abstract

In the present study, a novel ligand (L) made of 2-hydroxynaphthaldehyde and 3-hydrazone-1,3-dihydro-indole-2-one(3-[(3-hydroxynaphthalen-2-yl-ethylidene)-hydrazono]-1,3-dihydro-indol-2-one). The ligand was characterized by FTIR, UV-vis, mass, 1H-NMR, 13C-NMR, and CHN elemental analysis. New complexes of this ligand were created by treating methanol and a drop of DMF solution of the produced ligand with the hydrated metal salts of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) in a molar ratio of 2:1 (L:M). As a result, complexes have been emerged and identified FTIR, UV-vis, C.H.N., chloride-containing, molar conductance, magnetic susceptibility, and atomic absorption. The characterization result for each complex indicated complexes with octahedral coordination geometry and tridentates with metal to ligand ratios of 1:2. The biological activities of the new compounds were examined against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) giving an acceptable inhibition efficiency.
Synthesis, Thermal, DFT Calculations, HOMO-LUMO, MEP, and Molecular Docking Analysis of New Derivatives of Imidazolin-4-Ones Khedidja Merdja; Choukry Kamel Bendeddouche; Mokhtaria Drissi; Farah Chafika Kaouche; Nassima Medjahed; José Manuel Padrón; Mansour Debdab; Mustapha Rahmouni; El Habib Belarbi
Indonesian Journal of Chemistry Vol 23, No 6 (2023)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.87476

Abstract

This work focuses on synthesizing new imidazolin-4-one derivatives (2a-c), akin to leucettamine B analogs, via microwave-assisted transamination reactions. This reaction was carried out between 3-alkyl-5-dimethylamino-2-thioxo-imidazolidin-4-one (1a-c) and aniline. The structural integrity of the synthesized compounds was confirmed using NMR and MS spectroscopy, and their configurations were validated through DFT calculations. Analyses encompassed molecular electrostatic potential, frontier molecular orbitals, HOMO-LUMO energies, energy band gap, and global chemical reactivity descriptors, providing comprehensive insights into their characteristics. The investigation extended to the biological domain, employing substance activity spectra prediction (PASS) and molecular docking with Autodock Vina4 program. Notably, this holistic assessment aimed to gauge the potential regulatory effect of the compounds on cholesterol. This integrated approach contributes to compound design understanding and potential applications, spanning drug design and broader biomedical contexts.
Synthesis, Characterization, and Electrochemical Study of Novel Porphyrin Derivatives as Corrosion Inhibitors for Carbon Steel in HCl Solutions Mohammed Thamer Jaafar; Luma Majeed Ahmed; Rahman Tama Haiwal
Indonesian Journal of Chemistry Vol 24, No 2 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.87682

Abstract

This study involves the synthesis of some porphyrins derivatives, these are termed as 4,4',4'',4'''-(porphyrin-5,10,15,20-tetrayl)tetrakis(N-(6-aminoacridin-3-yl)benzamide) (3a), 4,4',4'',4'''-(porphyrin-5,10,15,20-tetrayl)tetrakis(N-(5-methoxybenzo[d]thiazol-2-yl)benzamide) (3b), 4,4'-(10,20-bis(3-hydroxyphenyl)porphyrin-5,15-diyl)bis(N-(6-aminoacridin-3yl)benzamide) (5a), and 4,4'-(10,20-bis(3-hydroxyphenyl)porphyrin-5,15-diyl)bis(N-(benzo[d]thiazol-2-yl)benzamide) (5b). These derivatives were synthesized using open circuit potential (OCP) and potentiodynamic polarization (PDP) in 0.1 M HCl solution methods. These derivatives were characterized using nuclear magnetic resonance (1H- and 13C-NMR) spectroscopy, mass spectra (ESI), and micro elemental analysis (CHN). The activity of these synthesized materials was investigated as a corrosion inhibitor using carbon steel (CS) as a model for corroded materials. The obtained results showed that the synthesized porphyrins derivatives were effective corrosion inhibitors to 0.1 M HCl solution for CS. In the case of the derivative 3a, a maximum inhibition efficiency (IE%) was recorded and it was around 74%. The derivative 3b showed an IE% of around 68.11%, while the %IE of 5a and 5b were around 18.98% and 45.16%, respectively. The best IE% value that was recorded for the derivative 3a has the potential to be effective anticorrosive coatings for industrial applications and act as mixture inhibitor because their ΔEcorr values are less than 85 mV. On the CS surface following treatment with compound 3a, the inhibitor mechanism for acidic medium (HCl) was investigated.
Nanomaterial for Adjuvants Vaccine: Practical Applications and Prospects Vy Anh Tran; Vien Vo; Vinh Quang Dang; Giang Ngoc Linh Vo; Ta Ngoc Don; Van Dat Doan; Van Thuan Le
Indonesian Journal of Chemistry Vol 24, No 1 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.87940

Abstract

Vaccines contain adjuvants to strengthen the immune responses of the receiver against pathogen infection or malignancy. A new generation of adjuvants is being developed to give more robust antigen-specific responses, specific types of immune responses, and a high margin of safety. By changing the physical and chemical properties of nanomaterials, it is possible to make antigen-delivery systems with high bioavailability, controlled and sustained release patterns, and the ability to target and image. Nanomaterials can modulate the immune system so that cellular and humoral immune responses more closely resemble those desired. The use of nanoparticles as adjuvants is believed to significantly improve the immunological outcomes of vaccination because of the combination of their immunomodulatory and delivery effects. In this review, we discuss the recent developments in new adjuvants using nanomaterials. Based on three main vaccines, the subunit, DNA, and RNA vaccines, the possible ways that nanomaterials change the immune responses caused by vaccines, such as a charge on the surface or a change to the surface, and how they affect the immunological results have been studied. This study aims to provide succinct information on the use of nanomaterials for COVID-19 vaccines and possible new applications.
Formulation and Characterization of a Pluronic F127 Polymeric Micelle as a Nanocarrier for Berberine Delivery Noora Kadhim Hadi Alyasari; Anwar Jasib Almzaiel
Indonesian Journal of Chemistry Vol 24, No 2 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.88109

Abstract

Berberine's (Ber’s) lower water solubility, which leads to low bioavailability, poses substantial delivery-related barriers to its therapeutic efficacy. Thus, a new approach to improving Ber's delivery and bioavailability is required. In this study, a Pluronic F127 micelle containing Ber (mBer) was formulated using thin-film hydration technique with the intention of resolving challenging issues associated with Ber delivery. The micelle was tested for drug loading and retention efficiency, size, zeta potential, shape, in vitro release, and in vitro toxicity. The spherical micelles that were made had an average encapsulation efficiency of 85%, a hydrodynamic size of 82.2 nm, a polydispersity of 0.176, and a zeta potential of −47.4 mV. The results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) indicated that Ber was physically entrapped and in an amorphous state within the synthesized micelles. Compared to the free Ber solution, the in vitro release of Ber from micelles exhibited both short-term rapid release and sustained release. The mBer was shown to be relatively non-toxic to blood cells via an in vitro hemolysis assay. Our findings showed that polymeric F127 micelles could be a simple nanocarrier for Ber delivery, which can be used to enhance the therapeutic efficiency of Ber.
Energy Efficiency of the Carbonate Hydroxyapatite Nanoparticle Synthesis Using Microwave Heating Treatment and Its Effect on Material Characteristics Saifuddin Aziz; Harno Dwi Pranowo; Ika Dewi Ana; Yusril Yusuf
Indonesian Journal of Chemistry Vol 24, No 1 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.88155

Abstract

This work aimed to study the energy efficiency of the synthesis process of carbonated hydroxyapatite (CHA) nanoparticles using microwave heating treatment and its effect on material characteristics. Microwaves can provide heat quickly, so it is expected to increase the efficiency of CHA synthesis through the heat provided. The CHA nanoparticles were synthesized using precipitation and heated using a microwave oven. The unheated and hydrothermal-heated precipitation methods were also conducted for comparison purposes. The microwave-heated precipitations were done at 270 W for 0.05, 0.10, and 0.15 h, while the hydrothermal-heated precipitations were done at 100 °C for 1, 2, and 3 h. The CHA materials were characterized using an infrared spectrophotometer, X-ray diffractometer, and electron microscope. The X-ray diffractogram and infrared spectra confirmed that the synthesized materials had a hydroxyapatite crystal phase with a CO32− functional group in their spectra. Microscopic images revealed that the materials were nanometer-sized grain aggregates. The heat treatment and duration increased the material characteristics, i.e., crystallinity, crystallite, and grain size. The CHA with microwave heat treatment had the highest crystallinity and crystallite size. The electrical energy calculation revealed microwave heating had better energy efficiency than hydrothermal heating.
A Univariate Optimization Strategy for Pre-concentration of Cobalt(II) in Various Matrixes by a DLLME before Analysis Using FAAS Zaman Sahb Mehdi; Saher Abdel Reda Ali Alshamkhawy
Indonesian Journal of Chemistry Vol 24, No 2 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.88218

Abstract

A procedure based on dispersive liquid-liquid microextraction (DLLME) for cobalt (Co) quantification in an Iraqi environmental matrix by flame atomic absorption spectroscopy (FAAS) was applied in this work. A case-study approach was chosen to obtain further in-depth information on the Co levels and to evaluate the effectiveness of N-salicylideneaniline (SAN) as a complexing agent for pre-concentration and extraction of Co. An univariate strategy was utilized to achieve the optimum extraction conditions. The estimated limits of detection (LOD) and quantification (LOQ) under optimum conditions were 1.04 and 3.47 µg L−1, respectively. The results achieved by the proposed system were compared with those using the microwave digestion/graphite furnace atomic absorption spectrometer (MWD/GF-AAS) for digest samples and also for some water samples (Direct GF-AAS). The proposed procedure was applied for analyzing eleven environmental samples. The detectable Co levels for water samples ranged from 0.72 to 4.30 µg L−1 with a relative standard deviation of 3.7–8.8%, while the concentration for solid samples ranged from 0.17–4.51 µg g−1 (2.4–11.8 RSD %). DLLME/FAAS proposed procedure is effective, simple, and has the benefit of minimizing the organic solvent consumption by a few microliters, which results in little waste.
Molecular Docking and Molecular Dynamic Investigations of Xanthone-Chalcone Derivatives against Epidermal Growth Factor Receptor for Preliminary Discovery of Novel Anticancer Agent Yehezkiel Steven Kurniawan; Ervan Yudha; Gerry Nugraha; Nela Fatmasari; Harno Dwi Pranowo; Jumina Jumina; Eti Nurwening Sholikhah
Indonesian Journal of Chemistry Vol 24, No 1 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.88449

Abstract

Epidermal growth factor receptor (EGFR) is found to be overexpressed in cancer cells as it controls angiogenesis, cell signaling, and proliferation mechanisms. Therefore, EGFR has been known as a common target for the initial screening of new anticancer agents. Either xanthone or chalcone has been evaluated as the anticancer agents, and their activity strongly depends on the type and position of the attached functional group. Therefore, molecular hybridization between xanthone and chalcone could yield novel anticancer agents through the EGFR inhibition mechanism. Herein, a series of xanthone-chalcone derivatives with hydrogen-bond-acceptor or hydrogen-bond-donor substituents at ortho, meta, and para positions was evaluated as the EGFR inhibitor. Thirty-seven xanthone-chalcones were designed and docked in the active site of EGFR. Compared to the native ligand, pristine xanthone-chalcone gave a 1.215× stronger binding energy and a 13.97× lower binding constant. Compound 3SH was found to be the most promising candidate due to its strongest binding energy (−9.71 kcal/mol) and the lowest binding constant (0.08 µM). Furthermore, molecular dynamic studies demonstrated that complex EGFR-3SH was stable for 100 ns simulation. These in silico investigations show that the xanthone-chalcone derivative is a promising novel anticancer agent to be examined through in vitro and in vivo assays.
New Charge-Transfer Complexes of Organochalcogenide Compound Based on Aryl Acetamide Group with Quinones: Synthesis, Characterization, Antioxidant, and Computational Study Attared Fadhel Hassan; Nahed Hazim Al-Haidery; Suhad Rajab Kareem; Sabah Abbas Malik; Shaker Abdel Salem Al-Jadaan; Nuha Hussain Al-Saadawy
Indonesian Journal of Chemistry Vol 24, No 2 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.88463

Abstract

This study aims to prepare charge transfer complexes derived from organochalcogenide of arylamide derivatives with different quinones. A new charge-transfer complexes have been developed through a direct reaction between (PhNHCOCH2)2Se, (o-CH3PhNHCOCH2)2Se, and (PhCH2NHCOCH2)2E, where E = S, Se, and Te are electron donors and different quinones are electron acceptors. The quinones used in the reaction were 2,3-dichloro-5,6-dicyanobenzoquinones (DDQ), 7,7’,8,8’-tetracyanoquinodimethane, and tetracyanoethane. The electron donors and electron acceptor mol were 1:1, and the reaction was conducted in acetonitrile. Infrared, 1H and 13C-NMR spectroscopic data characterized all complexes. The complexes’ antioxidant activity was evaluated through α,α-diphenyl-β-picrylhydrazyl at 10–0.312 mg/mL. The results showed that all complexes exhibited promising antioxidant activities. Among them, (PhCH2NHCOCH2)2S·DDQ compound had the least IC50 value of 6.725 mg/mL, indicating a potent scavenging property compared to other compounds. The molecular structures of charge-transfer complexes were investigated using hybrid density functional theory (B3LYP) and basis set 3-21G. We obtained geometrical structures' highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) surfaces and energy gaps through geometric optimization. We also investigated the molecular shapes and contours of the prepared compounds through geometrical optimization and compared the HOMO energy of the CT compounds to investigate donor and acceptor properties.

Filter by Year

2001 2025


Filter By Issues
All Issue Vol 25, No 5 (2025) Vol 25, No 4 (2025) Vol 25, No 3 (2025) Vol 25, No 2 (2025) Vol 25, No 1 (2025) Vol 24, No 6 (2024) Vol 24, No 5 (2024) Vol 24, No 4 (2024) Vol 24, No 3 (2024) Vol 24, No 2 (2024) Vol 24, No 1 (2024) Vol 23, No 6 (2023) Vol 23, No 5 (2023) Vol 23, No 4 (2023) Vol 23, No 3 (2023) Vol 23, No 2 (2023) Vol 23, No 1 (2023) Vol 22, No 6 (2022) Vol 22, No 5 (2022) Vol 22, No 4 (2022) Vol 22, No 3 (2022) Vol 22, No 1 (2022) Vol 22, No 2 (2022) Vol 21, No 6 (2021) Vol 21, No 5 (2021) Vol 21, No 4 (2021) Vol 21, No 3 (2021) Vol 21, No 2 (2021) Vol 21, No 1 (2021) Vol 20, No 6 (2020) Vol 20, No 5 (2020) Vol 20, No 4 (2020) Vol 20, No 3 (2020) Vol 20, No 2 (2020) Vol 20, No 1 (2020) Vol 19, No 4 (2019) Vol 19, No 3 (2019) Vol 19, No 2 (2019) Vol 19, No 1 (2019) Vol 18, No 4 (2018) Vol 18, No 3 (2018) Vol 18, No 2 (2018) Vol 18, No 1 (2018) Vol 17, No 3 (2017) Vol 17, No 2 (2017) Vol 17, No 1 (2017) Vol 16, No 3 (2016) Vol 16, No 2 (2016) Vol 16, No 1 (2016) Vol 15, No 3 (2015) Vol 15, No 2 (2015) Vol 15, No 1 (2015) Vol 14, No 3 (2014) Vol 14, No 2 (2014) Vol 14, No 1 (2014) Vol 13, No 3 (2013) Vol 13, No 2 (2013) Vol 13, No 1 (2013) Vol 12, No 3 (2012) Vol 12, No 2 (2012) Vol 12, No 1 (2012) Vol 11, No 3 (2011) Vol 11, No 2 (2011) Vol 11, No 1 (2011) Vol 10, No 3 (2010) Vol 10, No 2 (2010) Vol 10, No 1 (2010) Vol 9, No 3 (2009) Vol 9, No 2 (2009) Vol 9, No 1 (2009) Vol 8, No 3 (2008) Vol 8, No 2 (2008) Vol 8, No 1 (2008) Vol 7, No 3 (2007) Vol 7, No 2 (2007) Vol 7, No 1 (2007) Vol 6, No 3 (2006) Vol 6, No 2 (2006) Vol 6, No 1 (2006) Vol 5, No 3 (2005) Vol 5, No 2 (2005) Vol 5, No 1 (2005) Vol 4, No 3 (2004) Vol 4, No 2 (2004) Vol 4, No 1 (2004) Vol 3, No 3 (2003) Vol 3, No 2 (2003) Vol 3, No 1 (2003) Vol 2, No 3 (2002) Vol 2, No 2 (2002) Vol 2, No 1 (2002) Vol 1, No 3 (2001) Vol 1, No 2 (2001) Vol 1, No 1 (2001) ARTICLE IN PRESS Article in press More Issue