cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
Jl. Imam Bardjo, No 4 Semarang 50241 INDONESIA
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
Published by Universitas Diponegoro
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.14710/ijred
Core Subject : Science,
The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass, Wind energy technology, Material science and technology, Low energy Architecture, Geothermal energy, Wave and Tidal energy, Hydro power, Hydrogen Production Technology, Energy Policy, Socio-economic on energy, Energy efficiency and management The journal was first introduced in February 2012 and regularly published online three times a year (February, July, October).
Articles 573 Documents
Integration of 5G Technologies in Smart Grid Communication-A Short Survey Chandrasekaran, Yaspy Joshva; Gunamony, Shine Let; Chandran, Benin Pratap
International Journal of Renewable Energy Development Vol 8, No 3 (2019): October 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.3.275-283

Abstract

Smart grid is an intelligent power distribution system that employs dual communication between the energy devices and the substation. Dual communication helps to overseer the internet access points, energy meters, and power demand of the entire grid. Deployment of advanced communication and control technologies makes smart grid system efficient for energy availability and low-cost maintenance. Appropriate algorithms are analyzed first for the convenient grid to have proper routing and security with a high-level of power transmission and distribution. Information and Communication Technology plays a significant role in monitoring, demand response, and control of the energy distribution. This paper presents a broad review of communication and network technologies with regard to Internet of Things, Machine to Machine Communication, and Cognitive radio terminologies which comprises 5G technology. Networks suitable for future smart-grid are compared with respect to standard protocols, data rate, throughput, delay, security, and routing. Approaches adopted for the smart-grid system has been commended based on the performance and the parameters observed. ©2019. CBIORE-IJRED. All rights reserved
Biogas Production in Dairy Farming in Indonesia: A Challenge for Sustainability Wahyudi, Jatmiko; Achmad Kurnani, Tb. Benito; Clancy, Joy
International Journal of Renewable Energy Development Vol 4, No 3 (2015): October 2015
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.4.3.219-226

Abstract

Biogas plays an important role in supporting and ensuring the dairy farming sector remains sustainable. Biogas technology is not only as a method to dispose dairy farming waste but also benefiting economically, socially and environmentally. Biogas technology has been introduced since 1970s and many biogas programmes have been implemented in Indonesia. However compare to other countries like China and India, the dissemination of biogas technology in Indonesia runs quite slowly. There are several factors such as financial, policies and people’s perception hindering biogas use regarding the increase of biogas plants installed in Indonesia. In addition, many installed biogas plants are non-functional due to inadequate maintenance causing users stop to operate biogas plants and influencing potential users to reject adopting the technology. This paper provides an overview of biogas production sustainability which consists of five sustainability dimensions: technical, economic, social, environmental and organizational/institutional sustainability. Understanding the biogas sustainability helps stakeholders to realize that in order to promote biogas technology many sectors must be developed and many institutions must be involved and cooperated. The sustainability of biogas will determine the success of biogas dissemination particularly in dairy farming in the future. 
Gasification of Pelletized Corn Residues with Oxygen Enriched Air and Steam Sittisun, Poramate; Tippayawong, Nakorn; Shimpalee, Sirivatch
International Journal of Renewable Energy Development Vol 8, No 3 (2019): October 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.3.215-224

Abstract

This work studied generation of producer gas using oxygen-enriched air and steam mixture as gasifying medium. Corn residues consisting of cobs and stover were used as biomass feedstock. Both corn residues were pelletized and gasified separately with normal air, oxygen enriched air and steam mixture in a fixed bed reactor. Effects of oxygen concentration in enriched air (21-50%), equivalence ratio (0.15-0.35), and steam to biomass ratio (0-0.8) on the yield of product gas, the combustible gas composition such as H2, CO, and CH4, the lower heating value (LHV), and the gasification efficiency were investigated. It was found that the decrease in nitrogen dilution in oxygen enriched air increased proportion of combustible gas components, improved the LHV of producer gas, but gasification efficiency was not affected. The increase in equivalence ratio favoured high product gas yield but decreased combustible gas components and LHV. It was also observed that introduction of steam enhanced H2 production but excessive steam degraded fuel gas quality and decreased gasification efficiency. The highest gasification efficiency of each oxygen concentration was at equivalence ratio of 0.3 and steam to biomass ratio of 0.58 for cob, and 0.22 and 0.68 for stover, respectively. ©2019. CBIORE-IJRED. All rights reserved
Energetic and exergetic Improvement of geothermal single flash cycle Nazari, Navid; Porkhial, Soheil
International Journal of Renewable Energy Development Vol 5, No 2 (2016): July 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.2.129-138

Abstract

This paper presents a detailed analysis of a new method for improving energetic and exergetic efficiencies of single flash cycle. The thermodynamic process of the new method consists of extracting a fraction of hot wellhead geothermal brine for the purpose of superheating saturated steam entering the turbine. Computer programming scripts were developed and optimized based on mathematical proposed models for the different components of the systems. The operating parameters such as separator temperature, geofluid wellhead enthalpy and geothermal source temperature are varied to investigate their effects on both net power output and turbine exhaust quality of the systems. Also, full exergy assessment was performed for the new design. The results of separator temperature optimization revealed that specific net power output of the new design can be boosted up to 8% and turbine exhaust quality can be diminished up to 50% as compared to common single flash cycle. In addition, for wells with higher discharge enthalpy, superheating process improve specific net power output even up to 10%. Finally, it was observed that the overall system exergy efficiency was approximately raised 3%. Article History: Received January 5th 2016; Received in revised form June 25th 2016; Accepted July 3rd 2016; Available onlineHow to Cite This Article: Nazari, N. and Porkhial, S. (2016). Energetic and Exergetic Improvement of Geothermal Single Flash Cycle. Int. Journal of Renewable Energy Development, 5(2),129-138.http://dx.doi.org/10.14710/ijred.5.2.129-138 
Potency of Microalgae as Biodiesel Source in Indonesia Hadiyanto, Hadiyanto; Widayat, Widayat; Cahyo Kumoro, Andri
International Journal of Renewable Energy Development Vol 1, No 1 (2012): February 2012
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.1.1.23-27

Abstract

Within 20 years, Indonesia should find another energy alternative to substitutecurrent fossil oil. Current use of renewable energy is only 5% and need to be improved up to 17%of our energy mix program. Even though, most of the area in Indonesia is covered by sea, howeverthe utilization of microalgae as biofuel production is still limited. The biodiesel from currentsources (Jatropha, palm oil, and sorghum) is still not able to cover all the needs if the fossil oilcannot be explored anymore. In this paper, the potency of microalgae in Indonesia was analysed asthe new potential of energy (biodiesel) sources.
Energy Resource of Charcoals Derived from Some Tropical Fruits Nuts Shells Kongnine, Damgou Mani; Kpelou, Pali; Attah, N’Gissa; Kombate, Saboilliè; Mouzou, Essowè; Djeteli, Gnande; Napo, Kossi
International Journal of Renewable Energy Development Vol 9, No 1 (2020): February 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.1.29-35

Abstract

This work was focused on carbonizing four tropical fruits shells wastes such as: coconut shells (CS), palmyra shells (PS), doum palm shells (DPS), whole fruit of doum palm (WFDP) and teak wood (TW) used as control. The aim was to investigate the potential of those biochar to be used as an alternative energy source in replacement ofcharcoal. The raw biomasses samples were carbonized under the same conditions and some combustion characteristics of the obtained biochar such as lower calorific value, energy per unit volume associated to bulk density, ash content, moisture content and ash mineral content were investigated. The temperature in the furnace was estimated during carbonization process using a K-type thermocouple. The thermal profile of the studied raw biomasses reveals three phases of carbonization. The biochar yield drops significantly for all biomasses as the final maximum temperature increases. The average yields obtained ranged from 37.81 % for palmyra shells to 27.57 % for the doum palm shells. The highest yield achieved was 42.32 % obtained at 280 °C for palmyra shells, the lowest yield (24.42 %) was recorded at the highest maximum temperature of 590 ° C for doum palm shells. The results of energy parameters of the studied biochar showed that coconut shells charcoal presented the highest lower calorific value (28.059 MJ.kg-1), followed by doum palm shells (26.929 MJ.kg-1) when, with 25.864 MJ.kg-1, whole fruit of doum palm charcoal showed the lowest lower calorific value. Similarly, with the highest bulk density of 0.625 g/cm3 coconut shells charcoal presented the highest energy per unit volume (17536.88 J/cm3), whereas with the lowest bulk density of 0.415 g/cm3, whole fruit of doum palm charcoal presented the lowest energy per unit volume. The ash content analysis showed that whole fruit of doum palm had the highest ash content (18.75 %) and palmyra nut shells charcoal (8.42 %).Teak wood charcoal, took as control, has the highest lower calorific value (32.163 MJ.kg-1), less dense as coconut shell (0.43 g/cm3), his energy per unit of volume is 13830.09 j/cm3 but the lowest value of as content (2.90 %). Among these biomasses charcoals, only whole fruit of doum palm charcoal ash showed a high chloride and sulfide content respectively  9.73 % and 1.75 % in weight. From these results, the produced charcoals could be used as alternative fuels except for whole fruits of doum palm charcoal which chloride and sulfide content were found high. ©2020. CBIORE-IJRED. All rights reserved
A Novel Global MPP Tracking of Photovoltaic System based on Whale Optimization Algorithm Kumar, Cherukuri Santhan; Rao, Rayapudi Srinivasa
International Journal of Renewable Energy Development Vol 5, No 3 (2016): October 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.3.225-232

Abstract

To harvest maximum amount of solar energy and to attain higher efficiency, photovoltaic generation (PVG) systems are to be operated at their maximum power  point (MPP) under both variable climatic and partial shaded condition (PSC). From literature most of conventional MPP tracking (MPPT) methods are able to guarantee MPP successfully under uniform shading condition but fails to get global MPP as they may trap at local MPP under PSC, which adversely deteriorates the efficiency of Photovoltaic Generation (PVG) system. In this paper a novel MPPT based on Whale Optimization Algorithm (WOA) is proposed to analyze analytic modeling of PV system considering both series and shunt resistances for MPP tracking under PSC. The proposed algorithm is tested on 6S, 3S2P and 2S3P Photovoltaic array configurations for different shading patterns and results are presented. To compare the performance, GWO and PSO MPPT algorithms are also simulated and results are also presented.  From the results it is noticed that proposed MPPT method is superior to other MPPT methods with reference to accuracy and tracking speed.Article History: Received July 23rd 2016; Received in revised form September 15th 2016; Accepted October 1st 2016; Available onlineHow to Cite This Article: Kumar, C.H.S and Rao, R.S. (2016) A Novel Global MPP Tracking of Photovoltaic System based on Whale Optimization Algorithm. Int. Journal of Renewable Energy Development, 5(3), 225-232.http://dx.doi.org/10.14710/ijred.5.3.225-232
First Aspect of Conventional Power System Assessment for High Wind Power Plants Penetration Merzic, A; Music, M.; Rascic, M
International Journal of Renewable Energy Development Vol 1, No 3 (2012): October 2012
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.1.3.107-113

Abstract

Most power systems in underdeveloped and developing countries are based on conventional power plants, mainly "slow-response" thermal power plants and a certain number of hydro power plants; characterized by inflexible generating portfolios and traditionally designed to meet own electricity needs. Taking into account operational capabilities of conventional power systems, their development planning will face problems with integration of notable amounts of installed capacities in wind power plants (WPP). This is what highlights the purpose of this work and in that sense, here, possible variations of simulated output power from WPP in the 10 minute and hourly time interval, which need to be balanced, are investigated, presented and discussed. Comparative calculations for the amount of installed power in WPP that can be integrated into a certain power system, according to available secondary balancing power amounts, in case of concentrated and dispersed future WPP are given. The stated has been done using a part of the power system of Bosnia and Herzegovina. In the considered example, by planned geographically distributed WPP construction, even up to cca. 74% more in installed power of WPP can be integrated into the power system than in case of geographically concentrated WPP construction, for the same available amount of (secondary) balancing power. These calculations have shown a significant benefit of planned, geographically distributed WPP construction, as an important recommendation for the development planning of conventional power systems, with limited balancing options. Keywords: balancing reserves,  geographical dispersion, output power  variations
Comparative Study Between Direct Steam Generation and Molten Salt Solar Tower Plants in the Climatic Conditions of the Eastern Moroccan Region Lahoussine Ouali, Hanane Ait; Moussaoui, Mohammed Amine; Mezrhab, Ahmed; Naji, Hassane
International Journal of Renewable Energy Development Vol 9, No 2 (2020): July 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.2.287-294

Abstract

This study deals with a numerical investigation to assess and compare the thermal and economic performance of two solar tower power systems. It concerns the Molten Salt (MS) and Direct Steam Generation (DSG) technologies used as heat carrier and storage. For this purpose, a 50 MWe solar tower plant without thermal energy  storage under the climatic conditions of the eastern Moroccan region is simulated with the System Advisor Model (SAM) software. The meteorological data has been collected via a high precision meteorological station located in Oujda city(34°40'53'' N 1°54'30.9'' W). The results are presented in terms of monthly energy production, annual energy output, and Levelized Electricity Cost (LEC). From these findings, it can be concluded that, for an amount annual Direct Normal Irradiance (DNI) of 1989.9 kWh/m2/yr, the molten salt plant has the highest annual energy production than the DSG (86.3 GWh for MS against 83.3 GWh for DSG) and the LEC of the Molten salt plant is 12.5 % lower than the DSG plant. 
Optimum Sizing Algorithm for An Off Grid Plant Considering Renewable Potentials and Load Profile Brahmi, Nabiha; Charfi, Sana; Chaabene, Maher
International Journal of Renewable Energy Development Vol 6, No 3 (2017): October 2017
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.6.3.213-224

Abstract

The energy demand in remote area cannot be satisfied unless renewable energy based plants are locally installed. In order to be efficient, such projects should be sized on the basis of maximizing the renewable energies exploitation and meeting the consumer needs. The aim of this work is to provide an algorithm-based calculation of the optimum sizing of a standalone hybrid plant composed of a wind generator, a photovoltaic panel, a lead acid-battery bank, and a water tank. The strategy consists of evaluating the renewable potentials (solar and wind). Obtained results are entered as inputs to established generators models in order to estimate the renewable generations. The developed optimal sizing algorithm which is based on iterative approach, computes plant components sizes for which load profile meet estimated renewable generations. The approach validation is conducted for A PV/Wind/Battery based farm located in Sfax, Tunisia. Obtained results proved that the energetic need is covered and only about 4% of the generated energy is not used. Also a cost investigation confirmed that the plant becomes profitable ten years after installation.Article History: Received June 24th 2017; Received in revised form September 26th 2017; Accepted Sept 30th 2017; Available onlineCitation: Brahmi, N., Charfi, S., and Chaabene, M. (2017) Optimum Sizing Algorithm for an off grid plant considering renewable potentials and load profile. Int. Journal of Renewable Energy Development, 6(3), 213-224.https://doi.org/10.14710/ijred.6.3.213-224

Page 11 of 58 | Total Record : 573