International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles
111 Documents
Search results for
, issue
"Vol 13, No 2: April 2023"
:
111 Documents
clear
Image encryption algorithm based on the density and 6D logistic map
Abdullah A. Rashid;
Khalid Ali Hussein
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i2.pp1903-1913
One of the most difficult issues in the history of communication technology is the transmission of secure images. On the internet, photos are used and shared by millions of individuals for both private and business reasons. Utilizing encryption methods to change the original image into an unintelligible or scrambled version is one way to achieve safe image transfer over the network. Cryptographic approaches based on chaotic logistic theory provide several new and promising options for developing secure Image encryption methods. The main aim of this paper is to build a secure system for encrypting gray and color images. The proposed system consists of two stages, the first stage is the encryption process, in which the keys are generated depending on the chaotic logistic with the image density to encrypt the gray and color images, and the second stage is the decryption, which is the opposite of the encryption process to obtain the original image. The proposed method has been tested on two standard gray and color images publicly available. The test results indicate to the highest value of peak signal-to-noise ratio (PSNR), unified average changing intensity (UACI), number of pixel change rate (NPCR) are 7.7268, 50.2011 and 100, respectively. While the encryption and decryption speed up to 0.6319 and 0.5305 second respectively.
Single-phase transformerless inverter topologies at different levels for a photovoltaic system, with proportional resonant controller
Lamreoua Abdelhak;
Anas Benslimane;
Bouchnaif Jamal;
Mostafa El Ouariachi
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i2.pp1410-1422
In this paper, we have studied the topologies of single-phase transformerless inverters with different levels using a proportional-integral-resonant (PIR) AC controller, and the multi-level cascade inverter topology with sinusoidal pulse with modulation (SPWM) control in an open and closed loop. To ensure that these photovoltaic inverters can inject a defined amount of reactive power into the grid according to international regulations. Therefore, precise monitoring of the mains voltage vector by a phase-locked loop (PLL) system is applied to ensure the proper functioning of this system. For inverter topologies with less than three levels, the simulation results show that the highly efficient and reliable inverter concept (HERIC) topology performance is better than that of H5 and H6. On the other hand, the performance of the topology H6 ameliorate is superior to those of H4, H5, and HERIC in currents of leakage. On the other hand, for the control of cascaded multi-level closed-loop inverters, we notice that there is an improvement in the spectra and the elimination of all frequency harmonics, close to that of the fundamental, and a reduction in the rate of harmonic current distortion.
A new four-dimensional hyper-chaotic system for image encryption
Huda R. Shakir;
Sadiq A. Mehdi;
Anwar A. Hattab
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i2.pp1744-1756
Currently, images are very important with the rapid growth of communication networks. Therefore, image encryption is a process to provide security for private information and prevent unwanted access to sensitive data by unauthorized individuals. Chaos systems provide an important role for key generation, with high randomization properties and accurate performance. In this study, a new four-dimensional hyper-chaotic system has been suggested that is used in the keys generation, which are utilized in the image encryption process to achieve permutation and substitution operations. Firstly, color bands are permuted using the index of the chaotic sequences to remove the high correlation among neighboring pixels. Secondly, dynamic S-boxes achieve the principle of substitution, which are utilized to diffuse the pixel values of the color image. The efficiency of the proposed method is tested by the key space, histogram, and so on. Security analysis shows that the proposed method for encrypting images is secure and resistant to different attacks. It contains a big key space of (2627) and a high sensitivity to a slight change in the secret key, a fairly uniform histogram, and entropy values nearby to the best value of 8. Moreover, it consumes a very short time for encryption and decryption.
Variance of total dissolved solids and electrical conductivity for water quality in Sabak Bernam
Mohd Suhaimi Sulaiman;
Mohamad Faizal Abd Rahman;
Aileen Farida Mohd Adam
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i2.pp2259-2269
Water pollution is one of the most serious environmental problems in Malaysia. The most notable occurrence of pollution happened in Selangor. Currently, there are various water quality monitoring (WQM) methods to observe the quality of water. One of the methods used is the internet of things (IoT) for wireless sensor network technology to obtain real-time data measurement. In this study, the developed WQM system is equipped with a sensor that can measure total dissolved solid (TDS) and electrical conductivity (EC). Arduino UNO was used in this system as a microcontroller to interact with the sensor. The Wi-Fi module, ESP8266, was used to transfer the collected data to ThingSpeak, which acts as a cloud to store all the data. The results showed that both sample populations can be discriminated since the p-value is greater than 0.05 in the normality test, while in the paired sample t-test, the p-value is less than 0.05. In conclusion, this research provides an easier way to monitor water quality by taking up less time at less cost, as well as being reliable in giving real-time data reading.
Anti-resonant based nested terahertz fiber design for illicit drugs detection
Shaymaa Riyadh Tahhan;
Hadeel K. Aljobouri;
Baraa Riyadh Altahan
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i2.pp1588-1598
Anti-resonant hollow-core fibers (AR-HCFs) have gotten a lot of interest lately because of their potential uses in different medical sensing applications. In this work, an anti-resonant THz fiber (ATF) biosensor is implemented to check for illicit drugs and identify them at airport borders. Three different unlawful medicines have been chosen for the proposed design, Cocaine, Amphetamine, and Ketamine. A novel hollow-core anti-resonant fibers (HC-ARF) Matryoshka shape sensor has been designed for detecting the illegal drugs. The proposed design shows a robust sensitivity ranging from 99.8-99.9% and shallow confinement losses compared to other articles in the same field, as the higher losses are 9.3×10-4 dB/m with cocaine. Bending loss lessens as the bending radius rises while it is still below 1 dB/cm for radius more than 10 cm. The numerical simulation outcomes displayed that the designed HC-ARF has 0.0643±0.0238 ps/THz/cm flat dispersion at 0.6-2 THz. As the first application in this field, this work will be the first published in the literature.
Deep learning based masked face recognition in the era of the COVID-19 pandemic
Ashwan A. Abdulmunem;
Noor D. Al-Shakarchy;
Mais Saad Safoq
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i2.pp1550-1559
During the coronavirus disease 2019 (COVID-19) pandemic, monitoring for wearing masks obtains a crucial attention due to the effect of wearing masks to prevent the spread of coronavirus. This work introduces two deep learning models, the former based on pre-trained convolutional neural network (CNN) which called MobileNetv2, and the latter is a new CNN architecture. These two models have been used to detect masked face with three classes (correct, not correct, and no mask). The experiments conducted on benchmark dataset which is face mask detection dataset from Kaggle. Moreover, the comparison between two models is driven to evaluate the results of these two proposed models.
Implementation of variational iteration method for various types of linear and nonlinear partial differential equations
Muhammad A. Shihab;
Wafaa M. Taha;
Raad A. Hameed;
Ali Jameel;
Ibrahim Mohammed Sulaiman
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i2.pp2131-2141
There are various linear and nonlinear one-dimensional partial differential equations that are the focus of this research. There are a large number of these equations that cannot be solved analytically or precisely. The evaluation of nonlinear partial differential equations, even if analytical solutions exist, may be problematic. Therefore, it may be necessary to use approximate analytical methodologies to solve these issues. As a result, a more effective and accurate approach must be investigated and analyzed. It is shown in this study that the Lagrange multiplier may be used to get an ideal value for parameters in a functional form and then used to construct an iterative series solution. Linear and nonlinear partial differential equations may both be solved using the variational iteration method (VIM) method, thanks to its high computing power and high efficiency. Decoding and analyzing possible Korteweg-De-Vries, Benjamin, and Airy equations demonstrates the method’s ability. With just a few iterations, the produced findings are very effective, precise, and convergent to the exact answer. As a result, solving nonlinear equations using VIM is regarded as a viable option.
Mathematical modeling and kinematic analysis of 5 degrees of freedom serial link manipulator for online real-time pick and place applications
Abhilasha Singh;
Kalaichelvi Venkatesan;
Yuvalakshmi Nagarasan;
Karthikeyan Ramanujam;
Kumar Karuppusamy
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i2.pp1522-1532
Modeling and kinematic analysis are crucial jobs in robotics that entail identifying the position of the robot’s joints in order to accomplish particular tasks. This article uses an algebraic approach to model the kinematics of a serial link, 5 degrees of freedom (DOF) manipulator. The analytical method is compared to an optimization strategy known as sequential least squares programming (SLSQP). Using an Intel RealSense 3D camera, the colored object is picked up and placed using vision-based technology, and the pixel location of the object is translated into robot coordinates. The LOBOT LX15D serial bus servo controller was used to transmit these coordinates to the robotic arm. Python3 programming language was used throughout the entire analysis. The findings demonstrated that both analytical and optimized inverse kinematic solutions correctly identified colored objects and positioned them in their appropriate goal points.
Quantum behaved artificial bee colony based conventional controller for optimum dispatch
Himanshu Shekhar Maharana;
Saroja Kumar Dash
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i2.pp1260-1271
Since a multi area system (MAS) is characterized by momentary overshoot, undershoot and intolerable settling time so, neutral copper conductors are replaced by multilayer zigzag graphene nano ribbon (MLGNR) interconnects that are tremendously advantageous to copper interconnects for the future transmission line conductors necessitated for economic and emission dispatch (EED) of electric supply system giving rise to reduced overshoots and settling time and greenhouse effect as well. The recent work includes combinatorial algorithm involving proportional integral and derivative controller and heuristic swarm optimization; we say it as Hybrid- particle swarm optimization (PSO) controller. The modeling of two multi area systems meant for EED is carried out by controlling the conventional proportional integral and derivative (PID) controller regulated and monitored by quantum behaved artificial bee colony (ABC) optimization based PID (QABCOPID) controller in MATLAB/Simulink platform. After the modelling and simulation of QABCOPID controller it is realized that QABCOPID is better as compared to multi span double display (MM), neural network based PID (NNPID), multi objective constriction PSO (MOCPSO) and multi objective PSO (MOPSO). The real power generation fixed by QABCOPID controller is used to estimate the combined cost and emission objectives yielding optimal solution, minimum losses and maximum efficiency of transmission line.
New low-density-parity-check decoding approach based on the hard and soft decisions algorithms
Hajar El Ouakili;
Hassan Touati;
Abdelilah Kadi;
Younes Mehdaoui;
Rachid El Alami
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijece.v13i2.pp1639-1646
It is proved that hard decision algorithms are more appropriate than a soft decision for low-density parity-check (LDPC) decoding since they are less complex at the decoding level. On the other hand, it is notable that the soft decision algorithm outperforms the hard decision one in terms of the bit error rate (BER) gap. In order to minimize the BER and the gap between these two families of LDPC codes, a new LDPC decoding algorithm is suggested in this paper, which is based on both the normalized min-sum (NMS) and modified-weighted bit-flipping (MWBF). The proposed algorithm is named normalized min sum- modified weighted bit flipping (NMSMWBF). The MWBF is executed after the NMS algorithm. The simulations show that our algorithm outperforms the NMS in terms of BER at 10-8 over the additive white gaussian noise (AWGN) channel by 0.25 dB. Furthermore, the proposed NMSMWBF and the NMS are both at the same level of decoding difficulty.