cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 6,301 Documents
A bibliometric analysis of the advance of artificial intelligence in medicine Andrade-Arenas, Laberiano; Yactayo-Arias, Cesar
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3350-3361

Abstract

This bibliometric study analyzes the evolution of research in artificial intelligence (AI) applied to medicine from 2015 to September 2023. Using the Scopus database and keywords related to AI, machine learning, and deep learning in medicine, tools such as VOSviewer and Bibliometrix were used to explore publication trends, subject areas, co-authorship networks, and the most productive countries, among others. 2,064 articles were analyzed, and a significant increase in global academic production has been evident in the last five years. International collaboration was notable, with China and the United States leading in knowledge contribution. The keyword analysis highlights the breadth of topics and applications of AI in medicine, with particular emphasis on cancer detection, dengue diagnosis, and medical image analysis, among others. In conclusion, this study highlights the growing academic interest in the application of AI in medicine and the need for collaborative research. The findings underscore the relevance of these technologies in key areas of health care, contributing significantly to advances in medical diagnosis and prognosis.
SADCNN-ORBM: a hybrid deep learning model based citrus disease detection and classification Saini, Ashok Kumar; Bhatnagar, Roheet; Srivastava, Devesh Kumar
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp2191-2201

Abstract

Citrus disease has a significant influence on agricultural productivity these days, so technology based on artificial intelligence has been developed for creating computer vision (CV) models. By spotting disease in its early stages and enabling necessary productivity actions, CV in agriculture improves the production of agricultural goods. In this paper, we developed a CV-based citrus disease detection model called the self-attention dilated convolutional neural network optimized restricted Boltzmann machine (SADCNN-ORBM) model, which consists of two crucial parts: a SADCNN for disease segmentation and an ORBM optimized by the self-adaptive coati optimization (SACO) algorithm to improve the classification performance of diseases, which successfully divides the disease type into three groups: anthracnose, melanose, and brown spot. Numerous feature sets, such as texture features, three-channel red, green, blue (RGB) features, local binary pattern (LBP) features, and speeded-up robust features (SURF) features, are combined and given as input into the classification layer in the proposed model. We compare our proposed model's performance with existing methods by using several evaluation metrics. The findings demonstrate the SADCNN-ORBM model's superiority in precisely recognizing and classifying citrus illnesses, outperforming all available techniques.
Cloud based prediction of epileptic seizures using real-time electroencephalograms analysis Thahniyath, Gousia; Yadav, Chelluboina Subbarayudu Gangaiah; Senkamalavalli, Rajagopalan; Priya, Shanmugam Sathiya; Aghalya, Stalin; Reddy, Kuppireddy Narsimha; Murugan, Subbiah
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp6047-6056

Abstract

This study aims to improve the accuracy of epileptic seizure prediction using cloud-based, real-time electroencephalogram analysis. The goal is to build a strong framework that can quickly process electroencephalogram (EEG) data, extract relevant features, and use advanced machine learning algorithms to predict seizures with high accuracy and low latency by taking advantage of cloud platforms' computing power and scalability. The main objective is to provide patients and their caregivers with timely notifications so that they may control epilepsy episodes proactively. The goal of this project is to improve the lives of people with epilepsy by reducing the impact of seizures and improving treatment results via real-time analysis of EEG data. Cloud computing also allows the suggested seizure prediction system to be more accessible and scalable, meaning more people worldwide could benefit from it. This section discusses the results from five separate datasets of patients with epileptic seizures who underwent EEG analysis with the following details as frontopolar (FP1, FP2), frontal (F3, F4), frontotemporal (F7, F8), central (C3, C4), temporal (T3, T4), parieto-temporal (T5, T6), parietal (P3, P4), occipital (O1, O2), time (HH:MM:SS).
Hybrid chaotic map with L-shaped fractal Tromino for image encryption and decryption Victor Juvvanapudi, Sharon Rose; Rajesh Kumar, Pullakura; Satyanarayana Reddy, Konala Veera Venkata
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp389-397

Abstract

Insecure communication in digital image security and image storing are considered as important challenges. Moreover, the existing approaches face problems related to improper security at the time of image encryption and decryption. In this research work, a wavelet environment is obtained by transforming the cover image utilizing integer wavelet transform (IWT) and hybrid discrete cosine transform (DCT) to completely prevent false errors. Then the proposed hybrid chaotic map with L-shaped fractal Tromino offers better security to maintain image secrecy by means of encryption and decryption. The proposed work uses fractal encryption with the combination of L-shaped Tromino theorem for enhancement of information hiding. The regions of L-shaped fractal Tromino are sensitive to variations, thus are embedded in the watermark based on a visual watermarking technique known as reversible watermarking. The experimental results showed that the proposed method obtained peak signal-to-noise ratio (PSNR) value of 56.82dB which is comparatively higher than the existing methods that are, Beddington, free, and Lawton (BFL) map with PSNR value of 8.10 dB, permutation substitution, and Boolean operation with PSNR value of 21.19 dB and deoxyribonucleic acid (DNA) level permutation-based logistic map with PSNR value of 21.27 dB.
Hybridization of the Q-learning and honey bee foraging algorithms for load balancing in cloud environments Adewale, Adeyinka Ajao; Obiazi, Oghorchukwuyem; Okokpujie, Kennedy; Koto, Omiloli
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp4602-4615

Abstract

Load balancing (LB) is very critical in cloud computing because it keeps nodes from being overloading while others are idle or underutilized. Maintaining the quality of service (QoS) characteristics like response time, throughput, cost, makespan, resource utilization, and runtime is difficult in cloud computing due to load balancing. A robust resource allocation strategy contributes to the end user receiving high-quality cloud computing services. An effective LB strategy should improve and deliver required user satisfaction by efficiently using the resources of virtual machines (VM). The Q-learning method and the honey bee foraging load balancing algorithm were combined in this study. This hybrid combination of a load balancing algorithm and a machine learning method has reduced the runtime of load balancing activities and makespan, and increased task throughput in a cloud computing environment thereby enhancing routing activities. It achieved this by continuously tracking the usage histories of the VMs and altering the usage matrix to send jobs to the VMs with the best usage histories.
Crack detection based on mel-frequency cepstral coefficients features using multiple classifiers Altayeb, Muneera; Arabiat, Areen
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3332-3341

Abstract

Crack detection plays an essential role in evaluating the strength of structures. In recent years, the use of machine learning and deep learning techniques combined with computer vision has emerged to assess the strength of structures and detect cracks. This research aims to use machine learning (ML) to create a crack detection model based on a dataset consisting of 2432 images of different surfaces that were divided into two groups: 70% of the training dataset and 30% of the testing dataset. The Orange3 data mining tool was used to build a crack detection model, where the support vector machine (SVM), gradient boosting (GB), naive Bayes (NB), and artificial neural network (ANN) were trained and verified based on 3 sets of features, mel-frequency cepstral coefficients (MFCC), delta MFCC (DMFCC), and delta-delta MFCC (DDMFCC) were extracted using MATLAB. The experimental results showed the superiority of SVM with a classification accuracy of (100%), while for NB the accuracy reached (93.9%-99.9%), and (99.9%) for ANN, and finally in GB the accuracy reached (99.8%).
Enhanced Vigenere encryption technique for color images acting at the pixel level Chemlal, Abdelhakim; Tabti, Hassan; El Bourakkadi, Hamid; Rrghout, Hicham; Jarjar, Abdellatif; Benazzi, Abdelhamid
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6675-6688

Abstract

The pixel unit is an essential component of many encryption schemes. In the beginning two substitution tables, separately constructed from chaotic maps namely, the logistic map, slanted tent map, and the AJ map, which has a very high Lyapunov exponent and is very sensitive to start factors, are used to make modifications at the pixel level. These S-Boxes have a maximum period and are produced from several linear congruential generators. This approach uses newly developed confusion and diffusion functions connected to the recently built substitution tables to perform a refined Vigenere strategy. The purpose of this chaining is to defend the system from differential assaults. Extensive simulations on a variety of image formats and sizes confirm our process’s robustness against identified dangers.
Analysis of driving style using self-organizing maps to analyze driver behavior Shichkina, Yulia; Fatkieva, Roza; Kopylov, Maxim
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp2212-2225

Abstract

Modern life is strongly associated with the use of cars, but the increase in acceleration speeds and their maneuverability leads to a dangerous driving style for some drivers. In these conditions, the development of a method that allows you to track the behavior of the driver is relevant. The article provides an overview of existing methods and models for assessing the functioning of motor vehicles and driver behavior. Based on this, a combined algorithm for recognizing driving style is proposed. To do this, a set of input data was formed, including 20 descriptive features: About the environment, the driver's behavior and the characteristics of the functioning of the car, collected using OBD II. The generated data set is sent to the Kohonen network, where clustering is performed according to driving style and degree of danger. Getting the driving characteristics into a particular cluster allows you to switch to the private indicators of an individual driver and considering individual driving characteristics. The application of the method allows you to identify potentially dangerous driving styles that can prevent accidents.
Using deep learning to diagnose retinal diseases through medical image analysis Azhibekova, Zhanar; Bekbayeva, Roza; Yussupova, Gulbakhar; Kaibassova, Dinara; Ostretsova, Idiya; Muratbekova, Svetlana; Kakabayev, Anuarbek; Sultanova, Zhanylsyn
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6455-6465

Abstract

The scientific article focuses on the application of deep learning through simple U-Net, attention U-Net, residual U-Net, and residual attention U-Net models for diagnosing retinal diseases based on medical image analysis. The work includes a thorough analysis of each model's ability to detect retinal pathologies, taking into account their unique characteristics such as attention mechanisms and residual connections. The obtained experimental results confirm the high accuracy and reliability of the proposed models, emphasizing their potential as effective tools for automated diagnosis of retinal diseases based on medical images. This approach opens up new prospects for improving diagnostic procedures and increasing the efficiency of medical practice. The authors of the article propose an innovative method that can significantly facilitate the process of identifying retinal diseases, which is critical for early diagnosis and timely treatment. The results of the study support the prospect of using these models in clinical practice, highlighting their ability to accurately analyze medical images and improve the quality of eye health care.
Sentiment review of coastal assessment using neural network and naïve Bayes Somantri, Oman; Purwaningrum, Santi; Maharrani, Ratih Hafsarah
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp681-689

Abstract

An assessment of a place will provide an overview for other people whether the place is feasible to be visited or not. Assessment of coastal places will provide a separate assessment for potential visitors in considering visitation. This article proposes a model using the neural network (NN) and naïve Bayes (NB) methods to classify sentiment toward coastal assessments. The proposed NN and NB models are optimized using information gain (IG) and feature weights, namely particle swarm optimization (PSO) and genetic algorithm (GA) which are carried out to increase the level of classification accuracy. Based on the experimental results, the best level of accuracy for the classification of coastal assessments is 87.11% and is named the NB IG+PSO model. The best model obtained is a model that can be used as a decision support for potential beach visitors in deciding to visit the place.

Filter by Year

2011 2026


Filter By Issues
All Issue Vol 16, No 1: February 2026 Vol 15, No 6: December 2025 Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue