cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 6,301 Documents
Brain tumor detection using a MobileNetV2-SSD model with modified feature pyramid network levels Hikmah, Nada Fitrieyatul; Hajjanto, Ariq Dreiki; A. Surbakti, Armand Faris; Prakosa, Nadhira Anindyafitri; Asmaria, Talitha; Sardjono, Tri Arief
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp3995-4004

Abstract

Brain tumors, a subset of these malignancies, demand accurate and efficient diagnosis. Traditional methods use non-invasive medical imaging like magnetic resonance imaging (MRI) and computed tomography (CT). Although necessary for diagnosis, manual brain MRI picture segmentation is tedious and time-consuming. Using deep learning is a promising solution. This study proposes an innovative approach for brain tumor detection, focusing on meningioma tumors. Utilizing threshold-based segmentation, the MobileNetV2 architecture, a modified feature pyramid network (FPN), and single shot MultiBox detector (SSD), our model achieves precise localization and object detection. Pre-processing techniques such as grayscale conversion, histogram equalization, and Gaussian filtering enhance the MRI image quality. Morphological operations and thresholding facilitate tumor segmentation. Data augmentation and a meticulous dataset division aid in model generalization. The architecture combines MobileNetV2 as a feature extractor, SSD for object detection, and FPN for detecting small objects. Modifications, including lowering the minimum FPN level, enhance small object detection accuracy. The proposed model achieved a recall value of around 98% and a precision value of around 89%. Additionally, the proposed model achieved approximately 93% on both the dice similarity coefficient (DSC) value and the index of similarity. Based on the promising results, our research holds significant advancements for the field of medical imaging and tumor detection.
An advanced approach for accurate pneumonia detection using combined deep convolutional neural networks El Zein, Ola M.; Ghannam, Naglaa E.
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3094-3105

Abstract

Pneumonia, a lung infection caused by viral or bacterial agents, poses a significant health risk by affecting one or both lungs in humans. Accurate diagnosis, particularly in pediatric cases, is crucial for timely intervention. chest X-rays (CXRs) are a common and non-invasive diagnostic tool to detect pneumonia-related abnormalities. Nonetheless, the minimal radiation exposure suitable for pediatric diagnosis poses a challenge in accurately detecting pneumonia in children. This work proposes a concatenation model that combines two pre-trained convolutional neural networks (CNNs) depending on the transfer learning (TL) technique and optimizes the training parameters to build a highly accurate model for detecting pediatric pneumonia from CXR images. The concatenated extracted features from the two pre-trained CNNs are passed through a convolutional layer to select more valuable semantic features to reduce the extracted features, which helps reduce the model parameters and execution time. Experimental results demonstrate that the feature concatenation technique, along with optimization of training parameters, surpasses the performance of individual CNNs and several state-of-the-art methods. The proposed method achieves a classification accuracy of 98.5%, precision of 99.5%, sensitivity of 98.4%, and F1 score of 99.1%. The primary objective of the proposed approach is to aid radiologists in achieving accurate pneumonia diagnosis in real-time.
Seizure stage detection of epileptic seizure using convolutional neural networks Krori Dutta, Kusumika; Manohar, Premila; Krishnappa, Indira
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp2226-2233

Abstract

According to the World Health Organization (WHO), seventy million individuals worldwide suffer from epilepsy, a neurological disorder. While electroencephalography (EEG) is crucial for diagnosing epilepsy and monitoring the brain activity of epilepsy patients, it requires a specialist to examine all EEG recordings to find epileptic behavior. This procedure needs an experienced doctor, and a precise epilepsy diagnosis is crucial for appropriate treatment. To identify epileptic seizures, this study employed a convolutional neural network (CNN) based on raw scalp EEG signals to discriminate between preictal, ictal, postictal, and interictal segments. The possibility of these characteristics is explored by examining how well time-domain signals work in the detection of epileptic signals using intracranial Freiburg Hospital (FH), scalp Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) databases, and Temple University Hospital (TUH) EEG. To test the viability of this approach, two types of experiments were carried out. Firstly, binary class classification (preictal, ictal, postictal each versus interictal) and four-class classification (interictal versus preictal versus ictal versus postictal). The average accuracy for stage detection using CHB-MIT database was 84.4%, while the Freiburg database's time-domain signals had an accuracy of 79.7% and the highest accuracy of 94.02% for classification in the TUH EEG database when comparing interictal stage to preictal stage.
Reddit social media text analysis for depression prediction: using logistic regression with enhanced term frequency-inverse document frequency features Ayyalasomayajula, Madan Mohan Tito; Agarwal, Akshay; Khan, Shahnawaz
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5998-6005

Abstract

Language provides significant insights into an individual’s emotional state, social status, and personality traits. This research aims to enhance depression detection through the analysis of linguistic features and various dataset attributes. The dataset, sourced from the social networking platform Reddit, comprises posts and comments from individuals diagnosed with depression. Logistic regression with term frequency-inverse document frequency (TF-IDF) is employed as the primary model for text classification. To improve model performance, a novel feature—the average time interval between consecutive posts or comments—is introduced, contributing to a marginal but noteworthy improvement in accuracy. The proposed model demonstrates superior F1 scores compared to other models applied to the same dataset. Given the increasing recognition of mental health’s significance, accurately diagnosing mental disorders is of paramount importance. This study underscores the potential of leveraging linguistic analysis and advanced machine learning techniques to identify depressive symptoms, thereby contributing to more effective mental health diagnostics and interventions.
Breast cancer detection using ensemble of convolutional neural networks Nadkarni, Swati; Noronha, Kevin
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp1041-1047

Abstract

Early detection leading to timely treatment in the initial stages of cancer may decrease the breast cancer death rate. We propose deep learning techniques along with image processing for the detection of tumors. The availability of online datasets and advances in graphical processing units (GPU) have promoted the application of deep learning models for the detection of breast cancer. In this paper, deep learning models using convolutional neural network (CNN) have been built to automatically classify mammograms into benign and malignant. Issues like overfitting and dataset imbalance are overcome. Experimentation has been done on two publicly available datasets, namely mammographic image analysis society (MIAS) database and digital database for screening mammography (DDSM). Robustness of the models is accomplished by merging the datasets. In our experimentation, MatConvNet has achieved an accuracy of 94.2% on the merged dataset, performing the best amongst all the CNN models used individually. Hungarian optimization algorithm is employed for selection of individual CNN models to form an ensemble. Ensemble of CNN models led to an improved performance, resulting in an accuracy of 95.7%.
13-level modular multilevel inverter application for the exhaust fan drive control of Thu Thiem Road tunnel Anh, An Thi Hoai Thu; Cuong, Tran Hung
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5008-5017

Abstract

The ventilation system plays a vital role in ensuring the safety of people and means of transportation. Fresh air is created in the tunnel mainly thanks to the exhaust fans arranged at the top of the tunnels. The drive motor for the exhaust fan in the Thu Thiem Road tunnel has a power of 560 kW and operates at a voltage of 6 kV. The paper proposes a 13-level modular multilevel inverter (MMC) with the improved nearest level modulation (NLM) method to ensure the quality of voltage output from the voltage source inverter-fed exhaust fan drive motor. This is a novel combination aimed at transforming electrical power at high voltage levels, high power, and enhancing operational efficiency and the lifespan of semiconductor components within the inverter when operating continuously and over extended durations. The theoretical research results verified through MATLAB/Simulink software with simulation parameters collected from the exhaust fan motor of Thu Thiem Road tunnel, Vietnam show total harmonic distortion of the current in operation with 13 levels is 1.23%, while that of the current in operation with 7 levels is 10.1%; total harmonic distortion (THD) of the voltage with 13 levels is 5.33%, while that of the voltage with 7 levels is 11.37%.
Testing nanometer memories: a review of architectures, applications, and challenges Sontakke, Vijay; Atchina, Delsikreo
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1406-1423

Abstract

Newer defects in memories arising from shrinking manufacturing technologies demand improved memory testing methodologies. The percentage of memories on chips continues to rise. With shrinking technologies (10 nm up to 1.8 nm), the structure of memories is becoming denser. Due to the dense structure and significant portion of a chip, the nanometer memories are highly susceptible to defects. High-frequency specifications, the complexity of internal connections, and the process variation due to newer manufacturing technology further increased the probability of the physical failure of memories to a great extent. Memories need to be defect-free for the chip to operate successfully. Therefore, testing embedded memories has become crucial and is taking significant test costs. Researchers have proposed multiple approaches considering these factors to test the nanometer memories. They include using new fault models, march algorithms, memory built-in self-test (MBIST) architectures, and validation strategies. This paper surveys the methodologies presented in recent times. It discusses the core principles used in them, along with benefits. Finally, it discusses key opens in each and offers the scope for future research.
Algae content estimation utilizing optical density and image processing method Kamaluddin, Muhammad Wafiq; Gunawan, Agus Indra; Setiawardhana, Setiawardhana; Dewantara, Bima Sena Bayu; Insivitawati, Era; Asmarany, Anja; Pratama, Ariesa Editya
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6248-6257

Abstract

One of the factors that influence shrimp cultivation is the presence of algae. Precise knowing algae content in the pond is essential for effective management. Most research in the field of algae species carried out by researchers were observing Chlorella Sp. more than the other algae species, with a particular emphasis on substance concentrations. This study proposed non-invasive techniques for quantifying algae abundance, utilizing optical density (OD) and image processing (IP) methods. Three different algae species are frequently found in Indonesia i.e., Chlorella Sp., Thalassiosira Sp., and Skeletonema Sp. are used as sample. Those samples are cultured and prepared in a certain volume with a certain quantity. For experimental and observation purposes, those samples are then diluted into water based on percentage value. The experimental results provided RGB values, which were then used to establish polynomial equations. To verify these equations, two approaches were employed: synthetic image analysis and evaluation using additional data. The mean average error (MAE) was found to be 3.467 for IP method and 3.513 for OD method. It shows that IP method give better result compared to OD method in this study. However, it is very possible that the two methods will complement each other.
Driver-centered pervasive application for heart rate measurement Abdul Razak, Siti Fatimah; Jun Tong, Yong; Yogarayan, Sumendra; Sayed Ismail, Sharifah Noor Masidayu; Chia Sui, Ong
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp1176-1184

Abstract

People spend a significant amount of time daily in the driving seat and some health complexity is possible to happen like heart-related problems, and stroke. Driver’s health conditions may also be attributed to fatigue, drowsiness, or stress levels when driving on the road. Drivers’ health is important to make sure that they are vigilant when they are driving on the road. A driver-centered pervasive application is proposed to monitor a driver’s heart rate while driving. The input will be acquired from the interaction between the driver and embedded sensors at the steering wheel, which is tied to a Bluetooth link with an Android smartphone. The driver can view his historical data easily in tabular or graph form with selected filters using the application since the sensor data are transferred to a real-time database for storage and analysis. The application is coupled with the tool to demonstrate an opportunity as an aftermarket service for vehicles that are not equipped with this technology.
The comparison of several cryptosystems using the elliptic curve: a report Trung, Mai Manh; Do, Le Phe; Tuan, Do Trung; Trieu, Thu Thuy; Tanh, Nguyen Van; Tri, Ngo Quang; Cong, Bui Van
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5319-5329

Abstract

The elliptic curve cryptosystem (ECC) has several applications in Information Security, especially in cryptography with two main activities including encrypting and decrypting. There were several solutions of different research teams which propose various forms of the elliptic curve cryptosystem on cryptographic sector. In the paper, we proposed a solution for applying the elliptic curve on cryptography which is based on these proposals as well as basic idea about the elliptic curve cryptosystem. We also make comparison between our proposal and other listed solution in the same application of the elliptic curve for designing encryption and decryption algorithms. The comparison results are based on parameters such as time consumption (t), RAM consumption (MB), source code size (Bytes), and computational complexity.

Filter by Year

2011 2026


Filter By Issues
All Issue Vol 16, No 1: February 2026 Vol 15, No 6: December 2025 Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue