cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 6,301 Documents
Agriculture crop yield prediction using inertia based cat swarm optimization Reddy, Dwaram Jayanarayana; Madapuri, Rudra Kumar
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1700-1710

Abstract

Crop yield prediction is among the most important and main sources of income in the Indian economy. In this paper, the improved cat swarm optimization (ICSO) based recurrent neural network (RNN) model is proposed for crop yield prediction using time series data. The inertia weight parameter is added to position equation that is selected randomly, and a new velocity equation is produced which enhances the searching ability in the best cat area. By using inertia weight, the ICSO enhances performance of feature selection and obtains better convergence in minimum iteration. The RNN is applied to produce direct graph using sequence of data and decides current layer output by involving all other existing calculations. The performance of the model is estimated using coefficient of determination (R2), root mean square error (RMSE), mean squared error (MSE), and mean absolute error (MAE) on the yield from the years 2011 to 2021 with an annual prediction for 120 records of approximately 8 million nuts. The evaluated result shows that the proposed ICSO-RNN model delivers metrics such as R2, MAE, MSE, and RMSE values of 0.99, 0.77, 0.68, and 0.82 correspondingly, which ensures accurate yield prediction when compared with the existing methods which are hybrid reinforcement learning-random forest (RL-RF) and machine learning (ML) methods.
Digitalization of educational plays for quality education Soulimani, Younes Alaoui; Elaachak, Lotfi; Bouhorma, Mohammed
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5443-5457

Abstract

Repetitive tests on a learning material help schoolchildren to memorize and to learn this material. Psychologists call this phenomenon the testing effect. Skilled teachers use learning plays to embed routine tests in an engaging way. To widespread this practice, we propose a framework to digitize learning plays embedding routine tests into educational videogames. We have identified the smallest set of game design elements required to build an educational videogame out of a learning play. We have used the self-determination theory to group game design elements, and to define a breakdown structure for engagement engineering. This structure helps select the appropriate design elements for an engagement driver. We have applied the framework to digitize a learning play. We have tested the digital play with 238 schoolchildren who considered it as a video game. The video game tested a proposed pattern to create challenges allowing an engaging flow experience. The pattern increased responses (9%) and created time distortion (24%). Delivering rewards following variable schedules reduced errors (49%) and increased time distortion (16%). This research explores how to digitize learning plays into engaging educational video games and how to design engaging video games to remediate missed learning.
Design a smart platform translating Arabic sign language to English language Alamri, Maha; Lajmi, Sonia
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp4759-4774

Abstract

Sign language is the only means of communication for deaf and hearing-disabled people in their communities. It uses body language and gestures, such as hand shapes and facial expressions, to convey a message. It is important to note that sign language is specific to the region; that is, Arabic sign language (ArSL) is different from English sign language. Therefore, this research proposes a way to improve the translation of ArSL using a new artificial intelligence (AI) architecture. Specifically, a convolutional neural network (CNN) based on fine-tuning of the SSD-ResNet50 V1 FPN is applied to build a real-time ArSL recognition and translation system with fast and accurate results. The proposed AI architecture can provide translation of sign language in real-time to enhance communication in the deaf community. We achieved an average F-score of 86% and an average accuracy of 94%.
Data mining for predictive analysis in gynecology: a focus on cervical health Andrade-Arenas, Laberiano; Rubio-Paucar, Inoc; Yactayo-Arias, Cesar
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp2822-2833

Abstract

Currently, data mining based on the application of detection of important patterns that allow making decisions according to cervical cancer is a problem that affects women from the age of 24 years and older. For this purpose, the Rapid Miner Studio tool was used for data analysis according to age. To perform this analysis, the knowledge discovery in databases (KDD) methodology was used according to the stages that this methodology follows, such as data selection, data preparation, data mining and evaluation and interpretation. On the other hand, the comparison of methodologies such as the standard intersectoral process for data mining (Crips-dm), KDD and sample, explore, modify, model, evaluate (Semma) is shown, which is separated by dimensions and in each dimension both methodologies are compared. In that sense, a graph was created comparing algorithmic models such as naive Bayes, decision tree, and rule induction. It is concluded that the most outstanding result was -1.424 located in cluster 4 in the attribute result date.
A comparative study of machine learning tools for detecting Trojan horse infections in cloud computing environments Kanaker, Hasan; Tarawneh, Monther; Karim, Nader Abdel; Alsaaidah, Adeeb; Abuhamdeh, Maher; Qtaish, Osama; Alhroob, Essam; Alhalhouli, Zaid
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6642-6655

Abstract

Cloud computing offers several advantages, including cost savings and easy access to resources, it is also could be vulnerable to serious security attacks such as cloud Trojan horse infection attacks. To address this issue, machine learning is a promising approach for detecting these threats. Thus, different machine learning tools and models have been employed to detect Trojan horse infection such as Weka and Python Colab. This study aims to compare the performance of Weka and Python Colab, as popular tools for building machine learning models. This study evaluates the recall, accuracy, and F1-score of machine learning models built with Weka and Python Colab and compares their computational resources required employing several machine learning algorithms. The dataset collected and analyzed using dynamic analysis of Trojan horse infection in control lab environment. The findings of this study can help determine the decision about which tool to use to detect Trojan horse infections and provide insights into the strengths and limitations of Weka and Python Colab for building machine-learning models in general.
Detection of diseases in rice leaf using convolutional neural network with transfer learning based on ResNeXt Veeramreddy, Rajasekhar; Gnanasekaran, Arulselvi; Kunchala, Suresh Babu
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1739-1749

Abstract

Rice is the most cultivated crop in the agricultural field and is a major food source for more than 60% of the population in India. Occurrence of disease in rice leaves, majorly affects the rice quality, production and also the farmers’ income. Nowadays, new variety of diseases in rice leaves are identified and detected periodically throughout the world. Manual monitoring and detection of plant diseases proves to be time consuming for the farmer and also a costly affair for using chemicals in the disease treatment. In this paper, a deep learning method of convolutional neural networks (CNN) with a transfer learning technique is proposed for the detection of a variety of diseases in rice leaves. This method uses the ResNeXt network model for classifying the images of disease-affected plants. The proposed model’s performance is evaluated using accuracy, precision, recall, F1-score and specificity. The experimental results of ResNeXt model measured for accuracy, precision, recall, F1-score, and specificity, are respectively 99.22%, 92.87%, 91.97%, 90.95%, and 99.05%, which proves greater accuracy improvement than the existing methods of SG2-ADA, YOLOV5, InceptionResNetV2 and Raspberry Pi.
Forecasting stock market prices using deep learning methods Ismailova, Aisulu; Beldeubayeva, Zhanar; Kadirkulov, Kuanysh; Doumcharieva, Zhanagul; Konyrkhanova, Assem; Ussipbekova, Dinara; Aripbayeva, Ainura; Yesmukhanova, Dariga
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5601-5611

Abstract

The article focuses on enhancing stock market price prediction through artificial neural networks and machine learning. It underscores the significance of improving forecast accuracy by incorporating historical stock prices, macroeconomic indicators, news events, and technical indicators. Exploring deep learning principles, it delves into convolutional neural networks (CNN), recurrent neural networks (RNN), including long short-term memory (LSTM), and gated recurrent unit (GRU) modifications. This financial time series processing study covers data preprocessing, creating training/test sets, and selecting evaluation metrics. Results suggest promising applications for the developed forecasting models in stock markets, stressing the importance of considering various factors for precise forecasts in dynamic financial environments. Historical reserve data serves as the model foundation. Integration of macroeconomic, news, and technical indicators offers a holistic approach, aiding trend and anomaly identification for enhanced forecasts. The article recommends suitable deep learning architectures, highlighting LSTM and GRU's effectiveness in adapting to intricate data dependencies. Experimental outcomes showcase these architectures' benefits in predicting stock market prices, offering valuable insights for finance and asset management professionals in financial analysis and machine learning realms.
Privacy-aware secured discrete framework in wireless sensor network Sonnappa, Nandini; Muniyegowda, Kempanna
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp75-85

Abstract

Rapid expansion of wireless sensor network-internet of things (WSN-IoT) in terms of application and technologies has led to wide research considering efficiency and security aspects. Considering the efficiency approach such as data aggregation along with consensus mechanism has been one of the efficient and secure approaches, however, privacy has been one of major concern and it remains an open issue due to low classification and high misclassification rate. This research work presents the privacy and reliable aware discrete (PRD-aggregation) framework to protect and secure the privacy of the node. It works by initializing the particular variable for each node and defining the threshold; further nodes update their state through the functions, and later consensus is developed among the sensor nodes, which further updates. The novelty of PRD is discretized transmission for efficiency and security. PRD-aggregation offers reliability through efficient termination criteria and avoidance of transmission failure. PRD-aggregation framework is evaluated considering the number of deceptive nodes for securing the node in the network. Furthermore, comparative analysis proves the marginal improvisation in terms of discussed parameter against the existing protocol.
Statistical analysis for chemical compound based on several species of aquilaria essential oil Ahmad Sabri, Noor Aida Syakira; Nik Kamaruzaman, Nik Fasha Edora; Ismail, Nurlaila; Yusoff, Zakiah Mohd; Almisreb, Ali Abd; Tajuddin, Saiful Nizam; Taib, Mohd Nasir
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp3663-3673

Abstract

The paper examines the characterization of Aquilaria essential oils from different species, namely Aquilaria malaccensis, Aquilaria beccariana, Aquilaria crassna, and Aquilaria subintegra, renowned for agarwood production in Malaysia. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detector (GC-FID) were employed for extracting essential oil data, facilitating compound identification. Subsequently, a preliminary analysis focused on classifying significant chemical compounds in the samples. The study then utilized boxplot pre-processing for visualizing and interpreting data distribution. The statistical analyses were performed using MATLAB software version R2021b, considering two key parameters which are the peak area (%) of significant chemical compounds and the classification of Aquilaria species (A. beccariana, A. malaccensis, A. crassna, and A. subintegra) based on their chemical composition. The results, presented through boxplot analyses, demonstrated a clear representation of the parameters and their distribution in the data. This method not only confirmed the potential of boxplot analysis in statistical evaluation of significant compounds in Aquilaria essential oil but also suggested its applicability for further classification work.
Comprehensive review of load balancing in cloud computing system Oyediran, Mayowa O.; Ojo, Olufemi S.; Ajagbe, Sunday Adeola; Aiyeniko, Olukayode; Chima Obuzor, Princewill; Adigun, Matthew Olusegun
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3244-3255

Abstract

Load balancing plays a critical role in optimizing resource utilization and enhancing performance in cloud computing systems. As cloud environments grow in scale and complexity, efficient load balancing mechanisms become increasingly vital. This paper presents a comprehensive review of load balancing techniques in cloud computing systems, with a focus on their applicability, advantages, and limitations. The review encompasses both static and dynamic load balancing approaches, evaluating their effectiveness in addressing the challenges posed by cloud infrastructure, such as heterogeneity, scalability, and variability in workload demands. Furthermore, the review examines load balancing algorithms considering factors such as resource utilization, response time, fault tolerance, and energy efficiency. Additionally, the impact of load balancing on cloud performance metrics, including throughput, latency, and scalability, is analyzed. This review aims to provide insights into the state-of-the-art load balancing strategies and serve as a valuable resource for researchers, practitioners, and system designers involved in the development and optimization of cloud computing systems.

Filter by Year

2011 2026


Filter By Issues
All Issue Vol 16, No 1: February 2026 Vol 15, No 6: December 2025 Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue