cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 6,301 Documents
Intermittent open-circuit fault diagnosis of inverters based on DC-link electromagnetic field signal Vu, Hoang-Giang; Yahoui, Hamed
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp3885-3893

Abstract

For the objective of improving the reliability of converters in electric drives, research on a method for early detection of intermittent open-circuit faults of power valves is reported in this article. Intermittent open circuit condition is the incipient form of power valve open-circuit fault in power converters. Prompt detection of this fault allows for timely remediation of permanent open circuit defects that is a commonly subsequent process. This study introduces an investigation of this fault, which occurs in the voltage source inverter of induction motor drives. Intermittent faults are created through interference with the control pulse of the power valve. Wavelet transform with the Mexican hat mother function is utilized for signal processing. Appropriate ranges of the scale are selected to obtain a high magnitude of the wavelet coefficient at faulty instants. The analysis for the direct current recorded at the DC-link in simulation and the electromagnetic signal measured at the DC-bus of the inverter can be effectively used for the fault diagnosis.
Use of analytical hierarchy process for selecting and prioritizing islanding detection methods in power grids Abu Sarhan, Mohammad; Bien, Andrzej; Barczentewicz, Szymon
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp2422-2435

Abstract

One of the problems that are associated to power systems is islanding condition, which must be rapidly and properly detected to prevent any negative consequences on the system's protection, stability, and security. This paper offers a thorough overview of several islanding detection strategies, which are divided into two categories: classic approaches, including local and remote approaches, and modern techniques, including techniques based on signal processing and computational intelligence. Additionally, each approach is compared and assessed based on several factors, including implementation costs, non-detected zones, declining power quality, and response times using the analytical hierarchy process (AHP). The multi-criteria decision-making analysis shows that the overall weight of passive methods (24.7%), active methods (7.8%), hybrid methods (5.6%), remote methods (14.5%), signal processing-based methods (26.6%), and computational intelligent-based methods (20.8%) based on the comparison of all criteria together. Thus, it can be seen from the total weight that hybrid approaches are the least suitable to be chosen, while signal processing-based methods are the most appropriate islanding detection method to be selected and implemented in power system with respect to the aforementioned factors. Using Expert Choice software, the proposed hierarchy model is studied and examined.
Deep learning for magnetic resonance imaging brain tumor detection: evaluating ResNet, EfficientNet, and VGG-19 Muftic, Fatima; Kadunic, Merjem; Musinbegovic, Almina; Almisreb, Ali Abd; Jaafar, Hajar
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6360-6372

Abstract

This paper investigates the application of convolutional neural networks (CNNs) for the early detection of brain tumors to enhance diagnostic accuracy. Brain tumors present a significant global health challenge, and early detection is vital for successful treatments and patient outcomes. The study includes a comprehensive literature review of recent advancements in brain tumor detection techniques. The main focus is on the development and evaluation of CNN models, including EfficientNetB3, residual networks-50 (ResNet50) and visual geometry group-19 (VGG-19), for binary image classification using magnetic resonance imaging (MRI) scans. These models demonstrate promising results in terms of accuracy, precision, and recall metrics. However, challenges related to overfitting and limited dataset size are acknowledged. The study highlights the potential of artificial intelligence (AI) in improving brain tumor detection and emphasizes the need for further research and validation in real-world clinical settings. EfficientNetB3 reached 99.44% training accuracy but showed potential overfitting with validation accuracy dropping to 89.47%. ResNet50 steadily improved to 83.62% training accuracy and 89.47% validation accuracy. VGG19 struggled, with only 62% accuracy.
Predictive analysis of terrorist activities in Thailand's Southern provinces: a deep learning approach Ganokratanaa, Thittaporn; Ketcham, Mahasak
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1797-1808

Abstract

Terrorist activities have been on the rise globally, with Thailand experiencing significant challenges, particularly in its three southern border provinces. This study offers a comprehensive analysis aiming to predict forthcoming terrorist events in these provinces. We employed historical data, categorized into nine groups based on military expert recommendations, to train our prediction model. This research tested the prediction capabilities of various methodologies, including decision trees, naïve Bayesian learning techniques, and deep learning artificial neural networks. Notably, the deep neural network emerged as the superior predictive tool, achieving an impressive accuracy of 98.21% and a root mean square error (RMSE) of 0.59%. The primary anticipated events include bombings, shootings, assaults, and acts of vandalism. Our findings also revealed that Pattani Province was the most affected, accounting for 45% of incidents. Specific districts, such as Panare and Yarang, exhibited high crime rates of 40% and 36.84%, respectively. Yala Province, particularly Bannang Sata District, was identified as the hotspot for shooting incidents, with a rate of 34%.
Development of an algorithm for identifying the autism spectrum based on features using deep learning methods Amirbay, Aizat; Mukhanova, Ayagoz; Baigabylov, Nurlan; Kudabekov, Medet; Mukhambetova, Kuralay; Baigusheva, Kanagat; Baibulova, Makbal; Ospanova, Tleugaisha
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5513-5523

Abstract

The presented scientific work describes the results of the development and evaluation of two deep learning algorithms: long short-term memory with a convolutional neural network (LSTM+CNN) and long short-term memory with an autoencoder (LSTM+AE), designed for the diagnosis of autism spectrum disorders. The study focuses on the use of eye tracking technology to collect data on participants' eye movements while interacting with animated objects. These data were saved in NumPy array format (.npy) for ease of later analysis. The algorithms were evaluated in terms of their accuracy, generalization ability, and training time, which was confirmed by experts. The main goal of the study is to improve the diagnosis of autism, making it more accurate and effective. The convolutional neural network long short-term memory and autoencoder-long short-term memory models have shown promise as tools for achieving this goal, with the autoencoder model standing out for its ability to identify internal relationships in data. The article also discusses potential clinical applications of these algorithms and directions for future research.
Wireless channel-based ciphering key generation: effect of aging and treatment Almamori, Aqiel; Adil Abbas, Mohammed
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp451-456

Abstract

Key generation for data cryptography is vital in wireless communications security. This key must be generated in a random way so that can not be regenerated by a third party other than the intended receiver. The random nature of the wireless channel is utilized to generate the encryption key. However, the randomness of wireless channels deteriorated over time due to channel aging which casing security threats, particularly for spatially correlated channels. In this paper, the effect of channel aging on the ciphering key generations is addressed. A proposed method to randomize the encryption key each coherence time is developed which decreases the correlation between keys generated at consecutive coherence times. When compared to the conventional method, the randomness improvement is significant at each time interval. The simulation results show that the proposed method improves the randomness of the encrypting keys.
Diagnosis of patients with chronic heart failure implementing wavelet transform and machine learning techniques Arizmendi, Carlos; Reinemer, Jhon; Gonzalez, Hernando; Giraldo, Beatriz F
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp4577-4589

Abstract

Chronic heart failure (CHF) is a significant public health concern due to its increasing prevalence, high number of hospital admissions, and associated mortality. Its prevalence is progressively increasing due to the aging of the population and the decrease in mortality from acute myocardial infarction, among other medical advancements. Consequently, the incidence of CHF predominantly affects older age groups, doubling its prevalence every decade, becoming one of the main causes of mortality in patients older than 65 years. The main objective of this study is to apply machine learning based techniques to determine the best models to classify patients with chronic heart failure through their respiratory pattern. These patterns have been characterized from time series such as inspiratory and expiratory times, breathing duration, and tidal volume obtained from the respiratory flow signal. Based on the behavior of the respiratory pattern, CHF patients were classified into patients with non-periodic breathing, with periodic breathing, and with Cheyene-Stokes respiration (CSR). Time-frequency and statistical techniques have been implemented to analyze these features, and then various classification methods have been applied to define the optimal model with the best accuracy rates. These models could help to better understand the evolution of this disease and in early diagnosis.
Automated DeepLabV3+ based model for left ventricle segmentation on short-axis late gadolinium enhancement-magnetic cardiac resonance imaging images Awang Damit, Dayang Suhaida; Sulaiman, Siti Noraini; Osman, Muhammad Khusairi; A. Karim, Noor Khairiah; Setumin, Samsul
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3362-3371

Abstract

Accurate segmentation of myocardial scar tissue on late gadolinium enhancement-magnetic cardiac resonance imaging (LGE-CMR) is exceptionally vital for clinical applications, enabling precise diagnosis and effective treatment of various cardiac diseases, such as myocardial infarction and cardiomyopathies. However, the ventricle (LV) variations in the size and shape, artifacts, and image resolution of LGE-CMR has made automatic segmentation of myocardial scar tissue more challenging. While many existing approaches delineate the LV myocardium region using multi-modal segmentation, these models may be computationally complex and suffer from misalignment. Therefore, this study proposed an automatic dual-stage DeepLabV3+ based approach tailored for myocardial scar segmentation on short-axis LGE-MRI exclusively. To segment myocardial scar tissue, the second stage employs the segmented LV chamber from the previous stage. The encoder part of the framework utilizes a MobileNetV2 and ResNet50 backbone for the first and second segmentation, respectively, aiming for optimal resolution of feature maps. Both stages tailor an improved Atrous Spatial Pyramid Pooling module in the DeepLabV3+ model with fine-tuned dilated atrous rates to effectively extract the LV chamber and myocardial scar from the complex LGE-MRI background. Based on the results, the proposed dual-stage network recorded an outstanding segmentation performance, with mean Dice score of 96.02% for LV chamber segmentation and 68.01% for scar tissue extraction.
The evolution of smart sprayer system for agricultural sector in Malaysia Shamsudin, Nur Hazahsha; Noheng, Norman Koliah Anak; Chachuli, Siti Amaniah Mohd; Selamat, Nur Asmiza; Tawai, Hrithik; Raof, Nurliyana Abdul
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6122-6128

Abstract

This study presents the development of a smart sprayer system featuring a microcontroller, ultrasonic sensors, and a Wi-Fi module for agriculture. This system enables 360° movement capabilities and facilitates the activation and deactivation of the sprayer pump remotely. The system offers remote control functionality through smartphone integration, effectively mitigating the need for direct physical contact with hazardous chemicals during the spraying operation. The results demonstrate the efficient operation of the smart sprayer system. The average spraying efficacy is estimated to be 95%, surpassing that of conventional spraying methods, as evidenced by prior research studies. The system is accessible for remote operation via a user-friendly interface, facilitated by the integrated internet of things (IoT) and microcontroller. As anticipated, it successfully executed 360° movements, obstacle detection, water level indication, and remote control of the sprayer pump.
A taxonomy on power optimization techniques for fifth-generation heterogenous non-orthogonal multiple access networks Vishalakshi, Vishalakshi; Shivsharanappa Biradar, Gangadhar
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1616-1624

Abstract

Non-orthogonal multiple access (NOMA) is an anticipated technology for fifth-generation networks for increasing mass connectivity, spectrum efficiency, user-fairness, and higher capacity. NOMA allows end-clients to share indistinguishable radio resources such as spreading code, subcarrier, and time slots simultaneously. Thus, the main challenge involved in conceptualizing effective NOMA design is selection of resource allocation (i.e., user clustering, power allocation, and quality-of-service (QoS) assurance) algorithms. NOMA can be easily integrated with current fifth-generation multi-access methodologies. In this survey paper, the NOMA methodologies are discussed, and provide an overview of the methodologies and algorithms designed for optimizing power allocation, interference management, and network selection management in the heterogenous multiple carrier NOMA. The survey highlights the current limitation of the existing resource provisioning framework and presents a solution to overcome the current limitation.

Filter by Year

2011 2026


Filter By Issues
All Issue Vol 16, No 1: February 2026 Vol 15, No 6: December 2025 Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue