International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles
6,301 Documents
Implementation of message authentication code using DNA-LCG key and a novel hash algorithm
Gurpreet Kour Sodhi;
Gurjot Singh Gaba;
Lavish Kansal;
Mohamed El Bakkali;
Faisel Em Tubbal
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 1: February 2019
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (2330.209 KB)
|
DOI: 10.11591/ijece.v9i1.pp352-358
With the introduction of electronic form of data, the need for an automatic system of security to protect the integrity of data while being transferred from one place to another is required. This is especially the case for a network in which the systems are accessed over a public network or internet. Security mechanisms involve the use of more than one algorithm. They further require that the participants should possess a secret key, which raises issues about creation, distribution and proper usage of these keys. The most effective technique used in provisioning security is Message Authentication Code (MAC) which helps in preserving integrity. MAC involves the use of secret key along with a hash algorithm. In this paper, we present an implementation of MAC using a secret key created by Deoxyribonucleic Acid (DNA) and random output sequence of Linear Congruential Generator (LCG). The hash algorithm used is made more robust by adding complexity to the traditional SHA-160. The presented scheme RMAC (Robust Message Authentication Code) is tested on National Institute of Science and Technology (NIST) test suite for random numbers, avalanche criteria and resistance towards network attacks. The results reveal that the scheme is efficient and is applicable for a variety of security demanding environments.
Machine Learning Techniques on Multidimensional Curve Fitting Data Based on R- Square and Chi-Square Methods
Vidyullatha P;
D. Rajeswara Rao
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 3: June 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (295.199 KB)
|
DOI: 10.11591/ijece.v6i3.pp974-979
Curve fitting is one of the procedures in data analysis and is helpful for prediction analysis showing graphically how the data points are related to one another whether it is in linear or non-linear model. Usually, the curve fit will find the concentrates along the curve or it will just use to smooth the data and upgrade the presence of the plot. Curve fitting checks the relationship between independent variables and dependent variables with the objective of characterizing a good fit model. Curve fitting finds mathematical equation that best fits given information. In this paper, 150 unorganized data points of environmental variables are used to develop Linear and non-linear data modelling which are evaluated by utilizing 3 dimensional ‘Sftool’ and ‘Labfit’ machine learning techniques. In Linear model, the best estimations of the coefficients are realized by the estimation of R- square turns in to one and in Non-Linear models with least Chi-square are the criteria.
Analysis and Comparison of SMAC and TMAC Protocol for Energy Efficient Dynamic Topology in Sensor Network
Tapaswini Samant;
Amlan Datta
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 5: October 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (160.483 KB)
|
DOI: 10.11591/ijece.v6i5.pp2331-2337
In the era of wireless communication, wireless sensor is one of the best technologies we are witnessing. In case of environmental monitoring, tactical systems and different tracking applications, wireless sensors are being used. Here, the corresponding nodes operate on incomplete power and thus the energy comes into play to operate these entire networks. Managing the energy and its utilization is vital for TCP/IP protocol suite which is MAC layer’s application. Thus keeping in mind the above challenges, the techniques used are increasing the sleep duration, over hearing and ideal listening, collision of packet and eliminating hidden terminal problem. This paper is oriented towards the comparison of energy consumption by SMAC and TMAC protocol. The characteristics of TMAC and SMAC protocols were explored keeping real transmission conditions intact, like variable transmission bit rate, dynamic topology and mobile sensors in network. TMAC and SMAC protocols are contention based protocols and are designed to keep the energy consumption low using duty cycle.
Location-Based Augmented Reality Information for Bus Route Planning System
Komang Candra Brata;
Deron Liang;
Sholeh Hadi Pramono
International Journal of Electrical and Computer Engineering (IJECE) Vol 5, No 1: February 2015
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (669.289 KB)
|
DOI: 10.11591/ijece.v5i1.pp142-149
Bus Route Planner applications will unfold their full potential when bus passengers are enabled to get information about the shortest path route, make a travel plan and get the correct buses in order to reduce the travel time. However, all these information are provided in text based and map view. It is difficult to understand them for the person who does not know place in the map. This paper describes the android base application of Augmented Reality (AR) that has feature to support the action of a bus user in an innovative and dynamic ways by putting additional information layer on smart phone camera screen and give the instruction assistant that leading the user way to the nearest bus stop. The experimental results show that, the overall functional of proposed application can be run well in various type of Android smart phone. When compared with similar bus traveling applications, the proposed application works more efficient.
A multilabel classification approach for complex human activities using a combination of emerging patterns and fuzzy sets
Nehal A. Sakr;
Mervat Abu-ElKheir;
A. Atwan;
H. H. Soliman
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 4: August 2019
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (965.804 KB)
|
DOI: 10.11591/ijece.v9i4.pp2993-3001
In our daily lives, humans perform different Activities of Daily Living (ADL), such as cooking, and studying. According to the nature of humans, they perform these activities in a sequential/simple or an overlapping/complex scenario. Many research attempts addressed simple activity recognition, but complex activity recognition is still a challenging issue. Recognition of complex activities is a multilabel classification problem, such that a test instance is assigned to a multiple overlapping activities. Existing data-driven techniques for complex activity recognition can recognize a maximum number of two overlapping activities and require a training dataset of complex (i.e. multilabel) activities. In this paper, we propose a multilabel classification approach for complex activity recognition using a combination of Emerging Patterns and Fuzzy Sets. In our approach, we require a training dataset of only simple (i.e. single-label) activities. First, we use a pattern mining technique to extract discriminative features called Strong Jumping Emerging Patterns (SJEPs) that exclusively represent each activity. Then, our scoring function takes SJEPs and fuzzy membership values of incoming sensor data and outputs the activity label(s). We validate our approach using two different dataset. Experimental results demonstrate the efficiency and superiority of our approach against other approaches.
Analytic Estimation of Two-Dimensional Electron Gas Density and Current-Voltage Characteristic in AlGaN/GaN HEMT’s
Asmae Babaya;
Bri Seddik;
Saadi Adil
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 2: April 2018
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (409.08 KB)
|
DOI: 10.11591/ijece.v8i2.pp954-962
This paper is mainly dedicated to understand the phenomena governing the formation of two-dimensional electron gas (2DEG) confined in the quantum well which hold the role of the channel in the high electron density transistors (HEMT) based on AlGaN / GaN heterojunction. The theory takes into account: the crystal structure, the spontaneous and piezoelectric polarization concept, the formation mechanism of two-dimensional electron gas at the AlGaN / GaN interface, the approximate resolution of the Poisson and Schrödinger equations to determine the density of Two-dimensional electron gas after the analytical formula of the current-voltage characteristic is established. Our study is also concerned with the dependence of the two-dimensional electron gas density on the following technological parameters: Aluminum molare fraction, AlGaN layer thickness and AlGaN layer doping, In order to control the influence of these parameters on the device performance. Finally, the current-voltage characteristic which reflects the variation of the drain-source current as a function of the modulation of the gate voltage has been discussed.
A Novel Nonlinear Control of Boost Converter using CCM Phase Plane
Eko Setiawan;
Ichijo Hodaka
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1316.243 KB)
|
DOI: 10.11591/ijece.v8i6.pp4282-4291
Boost converter is one of fundamental DC-DC converters and used to deliver electric power with boosted voltage in many electrical systems. Several control strategies have been applied to control a boost converter delivering a constant output voltage. Generally, boost converter works in two modes; one is called a Continuous Conduction Mode (CCM). Many researches use CCM model in the controller design, but they never ensure that the controller always works in CCM. This paper proposes novel nonlinear controller of boost converter designed using the modification of flow in phase plane. The proposed controller guarantees that the boost converter works only in CCM region. The simulation result confirms that our proposed controller brings the state variables from any initial point to a desired operating point successfully.
Fuzzy Recursive Least-Squares Approach in Speech System Identification: A Transformed Domain LPC Model
Kah Wai Cheah;
Noor Atinah Ahmad
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 2: April 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1171.767 KB)
|
DOI: 10.11591/ijece.v7i2.pp842-849
In speech system identification, linear predictive coding (LPC) model is often employed due to its simple yet powerful representation of speech production model. However, the accuracy of LPC model often depends on the number and quality of past speech samples that are fed into the model; and it becomes a problem when past speech samples are not widely available or corrupted by noise. In this paper, fuzzy system is integrated into the LPC model using the recursive least-squares approach, where the fuzzy parameters are used to characterize the given speech samples. This transformed domain LPC model is called the FRLS-LPC model, in which its performance depends on the fuzzy rules and membership functions defined by the user. Based on the simulations, the FRLS-LPC model with this special property is shown to outperform the LPC model. Under the condition of limited past speech samples, simulation result shows that the synthetic speech produced by the FRLS-LPC model is better than those produced by the LPC model in terms of prediction error. Furthermore with corrupted past speech samples, the FRLS-LPC model is able to provide better reconstructed speech while the LPC model is failed to do so.
Direct-on-line-start permanent-magnet-assisted synchronous reluctance motors with ferrite magnets for driving constant loads
Percy R. Viego;
Vladimir Sousa;
Julio R. Gómez;
Enrique C. Quispe
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (604.342 KB)
|
DOI: 10.11591/ijece.v10i1.pp651-659
For driving constant loads in industry, the use of direct-on-line-start permanent-magnet-assisted synchronous reluctance motors with ferrite magnets (DOL-Start-PMa-SynRM) is proposed. The bibliographic search demonstrated that this new motor has greater efficiency than one similar induction motor (IM). It was evidenced that the main element that is required for direct starting is to insert a squirrel cage into the rotor of a PMa-SynRM, which does not produce negative operational effects in a steady state. An economic evaluation was carried out in a sugar mill company, applying the differential net present value (NPV) method, and a sensitivity analysis, considering the four factors that present the most variation. It was demonstrated, by means of a Pareto diagram standardized for the NPV that the most significant factors are fuel factor, lifespan and the multiplication of both. With response surfaces that are obtained with a multilevel factorial experiment, it was determined that, by varying the factors in the ranges considered, the NPV always remains positive and higher than 2200 USD. This is mainly due to the notable difference between the efficiency of the DOL-Start-PMa-SynRM and that of the IM. Consequently, is proved that an investment in the DOL-Start-PMa-SynRM may be feasible.
Improved Learning Scheme for Cognitive Radio using Artificial Neural Networks
Rita Mahajan;
Deepak Bagai
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 1: February 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (461.158 KB)
|
DOI: 10.11591/ijece.v6i1.pp257-267
The future of wireless system is facing the problem of spectrum scarcity. Number of users is increasing rapidly but available spectrum is limited. The Cognitive Radio (CR) network technology can enable the unlicensed users to share the frequency spectrum with the licensed users on a dynamic basis without creating any interference to primary user. Whenever secondary user finds that primary user is not transmitting and channel is free then it uses channel opportunistically. In this paper cognitive radio with predictive capability using artificial neural network has been proposed. The advantage of such cognitive user is saving of time and energy for spectrum sensing. Proposed radio will sense only that channel which is predicted to be free and channel is selected on the basis of maximum vacant time. Performance has been evaluated in the term of mean square error. The results show that this learning capability can be embedded in secondary users for better performance of future wireless technologies.