International Journal of Power Electronics and Drive Systems (IJPEDS)
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Articles
60 Documents
Search results for
, issue
"Vol 12, No 3: September 2021"
:
60 Documents
clear
Short and open circuit faults study in the PV system inverter
Mohammed Bouzidi;
Abdelkader Harrouz;
Tadj Mohammed;
Smail Mansouri
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1764-1771
The inverter is the principal part of the photovoltaic (PV) systems that assures the direct current/alternating current (DC/AC) conversion (PV array is connected directly to an inverter that converts the DC energy produced by the PV array into AC energy that is directly connected to the electric utility). In this paper, we present a simple method for detecting faults that occurred during the operation of the inverter. These types of faults or faults affect the efficiency and cost-effectiveness of the photovoltaic system, especially the inverter, which is the main component responsible for the conversion. Hence, we have shown first the faults obtained in the case of the short circuit. Second, the open circuit failure is studied. The results demonstrate the efficacy of the proposed method. Good monitoring and detection of faults in the inverter can increase the system's reliability and decrease the undesirable faults that appeared in the PV system. The system behavior is tested under variable parameters and conditions using MATLAB/Simulink.
Online efficiency optimization of IPMSM for electric vehicles
Hanaa Elsherbiny;
Mohamed Kamal Ahmed;
Mahmoud A. Elwany
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1369-1378
This paper presents an online efficiency optimization method for the interior permanent magnet synchronous motor (IPMSM) drive system in an electric vehicle (EV). The proposed method considers accurately the total system losses including fundamental copper and iron losses, harmonic copper and iron losses, magnet loss, and inverter losses. Therefore, it has the capability to always guarantee maximum efficiency control. A highly trusted machine model is built using finite element analysis (FEA). This model considers accurately the magnetic saturation, spatial harmonics, and iron loss effect. The overall system efficiency is estimated online based on the accurate determination of system loss, and then the optimum current angle is defined online for the maximum efficiency per ampere (MEPA) control. A series of results is conducted to show the effectiveness and fidelity of proposed method. The results show the superior performance of proposed method over the conventional offline efficiency optimization methods.
Hybrid nonlinear control strategies for performance enhancement of a doubly-fed induction aero-generator: design and DSP implementation
Bouchaib Rached;
Mustapha Elharoussi;
Elhassane Abdelmounim
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1472-1481
This paper reports on the design and implementation in DSP as hardware in the loop of a nonlinear control strategy for a grid-connected variable speed wind turbine using a doubly fed induction generator (DFIG). The objective of this work is to build a real-time nonlinear hybrid approach combining Backstepping control and sliding mode control strategies for DFIG used in wind energy conversion systems (WECS). The results of the DSP implementation are discussed and qualitative and quantitative performance evaluations are performed under various disturbed conditions. The implementation is performed using the TMS320F28335 DSP combined with the MATLAB/Simulink (2016a) environment. The experimental results have been satisfactorily achieved, which implies that the proposed strategy is an efficient and robust approach to monitor the WECS.
LCL filter design for grid-connected single-phase flyback microinverter: a step by step guide
Muhamad Faizal Yaakub;
Mohd Amran Mohd Radzi;
Maaspaliza Azri;
Faridah Hanim Mohd Noh
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1632-1643
Recently, LCL has become amongst the most attractive filter used for grid-connected flyback inverters. Nonetheless, the switching of power devices in the inverter configuration creates harmonics that affect the end application behavior and might shorten its lifetime. Furthermore, the resonance frequencies produced by the LCL network contribute to the system instability. This paper proposes a step-by-step guide to designing an LCL filter by considering several key aspects such as the resonance frequency and maximum current ripple. A single-phase grid-connected flyback microinverter with an LCL filter was designed then constructed in the MATLAB/Simulink environment. Several different parameter variations and damping solutions were used to analyze the performance of the circuit. The simulation result shows a promising total harmonic distortion (THD) value below 5% and harmonic suppression up to 14%.
Performance enhancement of BLDC motor using PID controller
S. Usha;
Pranjul Mani Dubey;
R. Ramya;
M. V. Suganyadevi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1335-1344
Mainly the DC motors are employed in most of the application. The main objective is to Regulate the DC motor system. A motor which displays the appearances of a DC motor but there is no commutator and brushes is called as brushless DC motor. These motors are widespread to their compensations than other motors in relationships of dependability, sound, efficiency, preliminary torque and longevity. To achieve the operation more reliable and less noisy, brushless dc motors are employed. In the proposed work, dissimilar methods of speed control are analysed. In real time submission of speed control of BLDC motor, numerous strategies are executed for the speed control singularity. The modified approaches are the employment of PI controller, use of PID controller and proposed current controller.
Newly fault-tolerant indirect vector control for traction inverter
Sara Zerdani;
Mohamed Larbi Elhafyani;
Hicham Fadil;
Smail Zouggar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1576-1585
The traction inverter is a crucial power device in the electric vehicle’s powertrain, and its failure is intolerable as it would considerably compromise the system’s safety. For more reliable driving, installing a traction inverter that is sufficiently resistant to electrical failure is inherent. Due to its compact size and the small number of switches incorporated in three-phase four-switch inverter, this modular topology was used to compensate for the open switch’s failure. However, it is known to have manifold weaknesses mainly distinguished in the low-frequency region. This paper introduces a new fault-tolerant indirect control that handles the IGBT’s failure constituting the traction inverter. The fault compensator is designed first based on the Proportional Integral regulator combined with the notch filter to mitigate the current imbalance and restore the DC voltage equilibrium.Furthermore, to conceive a comprehensive fault-tolerant control, there must therefore contain an accurate fault detector. In this regard, an uncomplicated fault diagnosis method based on the current spectral analysis has been performed. The effectiveness of the submitted controller was validated by simulation using Matlab.
Real time emulator for parallel connected dual-PMSM sensorless control
Khaldoune Sahri;
Maria Pietrzak-David;
Lotfi Baghli;
Abdelaziz Kheloui
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1390-1404
This paper presents a real-time emulator of a dual permanent magnet synchronous motor (PMSM) drive implemented on a field-programmable gate array (FPGA) board for supervision and observation purposes. In order to increase the reliability of the drive, a sensorless speed control method is proposed. This method allows replacing the physical sensor while guaranteeing a satisfactory operation even in faulty conditions. The novelty of the proposed approach consists of an FPGA implementation of an emulator to control the actual system. Hence, this emulator operates in real-time with actual system control in healthy or faulty mode. It gives an observation of the speed rotation in case of fault for the sake of continuity of service. The observation of the rotor position and the speed are achieved using the dSPACE DS52030D digital platform with a digital signal processor (DSP) associated with a Xilinx FPGA.
Comparison of electronic load using linear regulator and boost converter
Ayop, Razman;
Md Ayob, Shahrin;
Tan, Chee Wei;
Sutikno, Tole;
Abdul Aziz, Mohd Junaidi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1720-1728
Direct current (DC) electronic load is a useful equipment for testing the electrical system. It can emulate various load at a high rating. The electronic load requires a power converter to operate and a linear regulator is a common option. Nonetheless, it is hard to control due to the temperature variation. This paper proposed a DC electronic load using the boost converter. The proposed electronic load operates in the continuous current mode and control using the integral controller. The electronic load using the boost converter is compared with the electronic load using the linear regulator. The results show that the boost converter able to operate as an electronic load with an error lower than 0.5% and response time lower than 13 ms.
Implementation of speed control of sensorless brushless DC motor drive using H-infinity controller with optimized weight filters
K. Vinida;
Mariamma Chacko
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1379-1389
The hardware implementation of sensorless brushless direct current motor drive incorporating H-infinity control strategy with optimized weights by particle swarm optimization in the speed control is carried out in this work. The methodology involved in the design of brushless direct current (BLDC) motor control with sensorless position detection technique, the design of H-infinity speed controller, steps involved in particle swarm optimization for optimizing coefficients of its weights and the hardware implementation is discussed in detail in this paper. Texas Instruments microcontroller board C2000 Delfino Launchpad LAUNCHXL F28377S and driver BOOSTXL DRV8301 are used for realization of the speed controller. The code is developed using C2000 hardware support package in MATLAB/SIMULINK platform. A comprehensive performance analysis is accomplished during starting of the motor and during the fast application and removal of load. This strategy is found to be robust resulting in faster load disturbance rejection and better reference speed tracking. The experimental results of the proposed strategy are compared with that of conventional proportional-integral (PI) controller. The time domain parameters are also compared. It is found that the proposed strategy exhibits better performance characteristics during transients and sudden disturbances in load.
Modeling and design of an adaptive control for VSC-HVDC system under parameters uncertainties
Mohamed amine Kazi;
Radouane Majdoul;
Nadia Machkour
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.11591/ijpeds.v12.i3.pp1566-1575
The growing demand for electricity and the increasing integration of clean energies into the electrical grids requires the multiplication and reinforcement of high-voltage direct current (HVDC) projects throughout the world and demonstrates the interest in this electricity transmission technology. The transmitting system of the voltage source converter-high-voltage direct current (VSC-HVDC) consists primarily of two converter stations that are connected by a dc cable. In this paper, a nonlinear control based on the backstepping approach is proposed to improve the dynamic performance of a VSC-HVDC transmission system, these transport systems are characterized by different complexities such as parametric uncertainties, coupled state variables, neglected dynamics, presents a very interesting research topic. Our contribution through adaptive control based on the backstepping approach allows regulating the direct current (DC) bus voltage and the active and reactive powers of the converter stations. Finally, the validity of the proposed control has been verified under various operating conditions by simulation in the MATLAB/Simulink environment.