International Journal of Power Electronics and Drive Systems (IJPEDS)
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Articles
52 Documents
Search results for
, issue
"Vol 8, No 4: December 2017"
:
52 Documents
clear
Maximum Power Point Tracking for a Grid Connected Photovoltaic System using Sliding Mode Control
D. Sattianadan;
V. Kalyanasundaram;
S. Vidyasagar;
Deepak Kumar Nayak;
Roopam Jha
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 4: December 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (759.221 KB)
|
DOI: 10.11591/ijpeds.v8.i4.pp1785-1792
This paper presents a method to track the maximum power point for an isolated grid connected photovoltaic system. The method used to achieve this goal is sliding mode control. A high frequency flyback converter topology working in continuous conduction mode is used to boost the voltage and also provides galvanic isolation between input and output side. An inverter is used to invert the power for a grid connected operation. Therefore, the primary objective of this study is to design a sliding mode controller which can track maximum power driving a high frequency flyback converter and demonstrate its practicality as a higly efficient maximum power point tracker. This system is modelled and tested in MATLAB SIMULINK. To verify the results a practical implementation of sliding mode controller with high frequency flyback transformer is performed in a hardware setup
Practical Performance Evaluation of Maximum Power Point Tracking Algorithms in a Photovoltaic System
Hassan Abouobaida;
EL Beid Said
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 4: December 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1189.256 KB)
|
DOI: 10.11591/ijpeds.v8.i4.pp1744-1755
This paper addresses a performance evaluation of maximum power point tracking techniques (MPPT) in a photovoltaic system. This research work finds its applications in photovoltaic systems producing electric power with a better energy efficiency, which will lead to an improved relationship between the cost and the amount of the produced power. The importance of this work resides on the one hand in the evaluation of the performances of the different MPPTs according to three criteria instead of one or two criteria in other works of the literature and on the other hand in the study of Four algorithms in one paper and their comparisons. This paper discusses the performance evaluation of the MPPT algorithms called P&O, Inc-Cond, Hill-Climbing and Fuzzy algorithms based simulation results and practical validation. The performances of these algorithms are evaluated according to the following criteria: The response time, the amplitude of the oscillations around the optimal point and the accuracy. The objectives in this article are summarized in the following points: (a) modeling the photovoltaic systems, (b) presenting and detailing each MPPT algorithm (c) presenting and discussing the simulation results in Matlab/Simulink and practical validation (d) evaluating the performance of each algorithm. This paper is completed by a summary on the areas of use for each algorithm and conclusions.
Predictive Direct Power Control (PDPC) of Grid-connected Dual-active Bridge Multilevel Inverter (DABMI)
H.H. Goh;
Azuwien Aida;
S.S. Lee;
S.Y. Sim;
K.C. Goh
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 4: December 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1243.441 KB)
|
DOI: 10.11591/ijpeds.v8.i4.pp1524-1533
This paper deals with controlling a grid-connected dual-active bridge multilevel inverter for renewable energy integration. The concept of direct power control is integrated with model predictive control algorithm, which is termed as predictive direct power control, to control the real and reactive power injected into the power grid. The proposed multilevel inverter allows more options of feasible voltage vectors for switching vector selections in order to generate multilevel outputs, and thereby obtaining high power quality in the power grid. By using the predictive direct power control, simulation results show that the proposed multilevel inverter produces lower power ripple and manage to achieve currents with low total harmonic distortion which are well within the IEEE standard. The modeling and simulation of the system are implemented and validated by MATLAB Simulink software.
Hysteresis Control 3-Level SI-NPC Inverter with Wind Energy System
K. Selvakumar;
R. Palanisamy;
K Vijayakumar;
D Karthikeyan;
D. Selvabharathi;
V. Kubendran
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 4: December 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (683.194 KB)
|
DOI: 10.11591/ijpeds.v8.i4.pp1764-1770
The system is a 3-level Neutral point clamped hysteresis current controlled Inverter with Wind energy as power source. The input DC Power for the multi-level inverter is drawn from wind turbine generator connected through a rectifier circuit. An inductor has been introduced for smoothening the DC output from the rectifier. The inverter uses Neutral Point Clamped topology. The switching pulses for the inverter are achieved by hysteresis current control technique. This system is advantageous over the conventional SPWM based system as the hysteresis current control allows to reduce the low frequency harmonics while also allowing to control the fundamental amplitude depending on frequency. The outputs for the system are verified using MATLAB simulations. The hardware for Hysteresis current control for the inverter is implemented by using a dSPIC microcontroller. The proposed system can be implemented in households for supplying backup power in case of power shortage and can also be used as a primary power source if wind flow is abundant. It is easy to implement, economical and provides clean energy
Neural Adaptive Kalman Filter for Sensorless Vector Control of Induction Motor
Ghlib Imane;
Messlem Youcef;
Gouichiche Abdelmadjid;
Chedjara Zakaria
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 4: December 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1092.656 KB)
|
DOI: 10.11591/ijpeds.v8.i4.pp1841-1851
This paper presents a novel neural adaptive Kalman filter for speed sensorless field oriented vector control of induction motor. The adaptive observer proposed here is based on MRAS (model reference adaptive system) technique, where the linear Kalman filter calculate the stationary components of stator current and the rotor flux and the rotor speed is calculated with an adaptive mechanism. Moreover, to improve the performance of the PI classical controller under different conditions, a novel adaptation scheme based on ADALINE (ADAptive LInear NEuron) neural network is used. It offers a solution to the PI parameters to stabilize automatically about their optimum values and speed estimation to converge quicker to the real. The proposed adaptive Kalman filter represents a good comprise between estimation accuracy and computationally intensive. The simulation results showed the robustness, efficiency, and superiority of the proposed scheme compared to the classical method even in low speed region.
Effective Technique for Improving Electrical Performance and Reliability of Fuel Cells
A. Albarbar;
M. Alrweq
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 4: December 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1069.369 KB)
|
DOI: 10.11591/ijpeds.v8.i4.pp1868-1875
To optimise the electrical performance of proton exchange membrane (PEM) fuel cells, a number of factors have to be precisely monitored and controlled. Water content is one of those factors that has great impact on reliability, durability and performance of PEM fuel cells. The difficulty in controlling water content lies in the inability to determine correct level of water accumulated inside the fuel cell. In this paper, a model-based technique, implemented in COMSOL, is presented for monitoring water content in PEM fuel cells. The model predicts, in real time, water content taking account of other processes occurring in gas channels, across gas diffusion layers (GDL), electrodes, and catalyst layer (CL) and within the membrane to minimize voltage losses and performance degradation. The level of water generated is calculated as function of cell’s voltage and current. Model’s performance and accuracy are verified using a transparent 500 mW PEM fuel cell. Results show model predicted current and voltage curves are in good agreement with the experimental measurements. The unique feature of this model is that, no special requirements are needed as only current, and voltage of the PEM fuel cell were measured thus, is expected to pave the path for developing non-intrusive control and monitoring systems for fuel cells.
Vibration Based Energy Harvesting Interface Circuit using Diode-Capacitor Topologies for Low Power Applications
Amirul Adlan Amirnudin;
Farahiyah Mustafa;
Anis Maisarah Mohd Asry;
Sy Yi Sim
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 4: December 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (396.158 KB)
|
DOI: 10.11591/ijpeds.v8.i4.pp1943-1947
A battery-less energy harvesting interface circuit to extract electrical energy from vibration has been proposed in this paper for low power applications. The voltage doubler integrated with DC – DC boost converter circuits were designed and simulated using MultiSIM software. The circuit was then fabricated onto a printed circuit board (PCB), using standard fabrication process. The Cockcroft Walton doubler was chosen to be implemented in this study by utilizing diode-capacitor topologies with additional RC low pass filter. The DC – DC boost converter has been designed using a CMOS step -up DC – DC switching regulators, which are suitable for low input voltage system. The achievement of this interface circuit was able to boost up the maximum voltage of 5 V for input voltage of 800 mV.
Performance Analysis of 12Slot with Various Rotor Pole Numbers HE-FSM for HEV Application
Siti Khalidah Rahimi;
Zarafi Ahmad;
Erwan Sulaiman;
Enwelum Mbadiwe I;
Syed Muhammad Naufal Syed Othman
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 4: December 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (665.411 KB)
|
DOI: 10.11591/ijpeds.v8.i4.pp1886-1893
This paper presents performance analysis of 12Slot with various rotor pole numbers Hybrid Excitation Flux Switching Machine (HEFSM) for Hybrid Electric Vehicles (HEVs) application. HEFSM has carried out by combining the advantage of Permanent Magnet (PM) machines and DC Field Excitation Coil (FEC) synchronous machines. Previously, most of HEFSM structure having FEC windings in theta direction that create a problem of flux cancellation that will affect the performances of the machine. Thus, a design of 12Slot HEFSM with FEC wounded in radial direction is proposed to eliminate the flux cancellation effect. At first, armature coil arrangement test at no-load condition is conducted to analyze PM flux. Furthermore, induced voltage and cogging torque at open circuit condition are investigated based on 2D finite element analysis (FEA). Finally, torque and power performances are also examined at maximum FEC and armature current densities. The outcomes demonstrate that 12S-14P configuration has the highest PM flux linkage, torque, power and less distortion of back-emf waveform which are required to be used as a motor in HEVs. The highest torque and power achieved are 220.15Nm and 92.45kW, respectively.
Enhanced Zeta Converter for DC Bus Voltage Regulation
P. Suresh;
D. Kirubakaran
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 4: December 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (715.197 KB)
|
DOI: 10.11591/ijpeds.v8.i4.pp1503-1511
In this paper, an Enhanced Zeta Converter (EZC) along with a high voltage gain converter is presented for DC Bus voltage regulation. The enhanced zeta converter consists of capacitors connected in parallel with the conventional zeta structure. The proposed zeta converter is applied to the Photo Voltaic system (PV) The well known Maximum Power Point Tracking (MPPT) P & O algorithm is used to extract maximum power from the photovoltaic system. The increased voltage is obtained with reduced number of switches using the proposed structure. The results to the proposed structure are compared with the conventional topology. The proposed converter is simulated using MATLAB and the same is verified with the hardware.
A comparative Analysis of Symmetrical and Asymmetrical Cascaded Multilevel Inverter Having Reduced Number of Switches and DC Sources
Lipika Nanda;
A Dasgupta;
U.K. Rout
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 4: December 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (627.486 KB)
|
DOI: 10.11591/ijpeds.v8.i4.pp1595-1602
As multilevel inverters are gaining increasing importance .New topologies are being proposed in order to achieve large number of levels in output voltage. A simplified MLI topology has been presented with both symmetrical and asymmetrical configurations. This paper represents a comprehensive analysis of above mentioned topology with FFT analysis,switching and conduction losses of the inverter.Hence efficiency at different carrier frequencies has been calculated successfully.Results are verified with simulation studies.Multilevel inverters are currently considered as a better industrial solution for high dynamic performance and power-quality demanding applications, covering a wide power range.