cover
Contact Name
Triwiyanto
Contact Email
triwiyanto123@gmail.com
Phone
+628155126883
Journal Mail Official
editorial.jeeemi@gmail.com
Editorial Address
Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya Jl. Pucang Jajar Timur No. 10, Surabaya, Indonesia
Location
Kota surabaya,
Jawa timur
INDONESIA
Journal of Electronics, Electromedical Engineering, and Medical Informatics
ISSN : -     EISSN : 26568632     DOI : https://doi.org/10.35882/jeeemi
The Journal of Electronics, Electromedical Engineering, and Medical Informatics (JEEEMI) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics which covers three (3) majors areas of research that includes 1) Electronics, 2) Biomedical Engineering, and 3)Medical Informatics (emphasize on hardware and software design). Submitted papers must be written in English for an initial review stage by editors and further review process by a minimum of two reviewers.
Articles 5 Documents
Search results for , issue "Vol 1 No 2 (2019): October" : 5 Documents clear
Monitoring Heart Rate And Temperature Based On The Internet Of Things Rangga Adi Firmansyah; Bambang Guruh I; Sumber
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 1 No 2 (2019): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v1i2.1

Abstract

Monitoring and measurement of body temperature is very important to know the condition of the patient. The body temperature has associated with a number of human heartbeat, little change in body temperature can significantly affect the performance of high cardiac health problems this causes the need for health monitoring. IOT helps to move from manual heart rate monitoring system for heart rate monitoring system remotely. The purpose of this study is to develop the monitoring heart rate and temperature based Internet of Things. This tool can see the dawn of the body and the value of BPM from a distance. The way the device is very simple to use cardiac leads in Lead II to obtain the value of BPM and DS18B20 temperature sensor to measure the body temperature will be displayed on Thingspeak through ESP32 module.
Patient Monitor for SpO2 and Temperature Parameters Moch Sahrul Triandi Putra Sahrul; Triwiyanto; Torib Hamzah
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 1 No 2 (2019): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v1i2.2

Abstract

Patient monitor is an apparatus used to monitor the patient's condition in real-time, hence the patient's physiological conditions can be identified at that time. The purpose of this study is to design a patient monitor for SpO2 and temperature parameters based on computer with Delphi progaming. In this work, the author developed patient monitor with two parameters (SpO2 and Temperature). The workings of this tool are very simple by installing the finger sensor on the finger and the temperature sensor in the armpit area will then be detected by the two sensors that will be displayed on the PC and LCD Characters, analog data from the ADC Atmega is received by the personal computer (PC) via Bluetooth HC -05 and values ​​per parameter are also displayed on the Character LCD. After measuring, get an error in the tool, the biggest SpO2 error of this tool is 1.02% and get the smallest error of 0.8%. And for the biggest error of Temperature of 1.02% and the smallest error of 0.8%.
Baby Incubator Based on PID Control With Kangaroo Mode (Kangaroo Mode and Humidity) Nur Fildzah Hidayati; Endro Yulianto; Abd Kholiq
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 1 No 2 (2019): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v1i2.3

Abstract

Baby Incubator is one of the electromedical equipment used to provide protection to premature babies or low birth weight. Baby care in the baby incubator causes separation of mother and baby. A new innovation in the care of premature babies who bring their babies and mothers closer is Kangaroo Method Management (PMK). Kangaroo method treatment aims to create emotional attachment to the baby, so that the mother will confidently take care. The research and manufacture of this module uses a method of treating baby incubator by adding a reading of the room temperature when the kangaroo mode runs at a setting of 34 ° C - 37 ° C with the effect of room temperature at 18 ° C, 24 ° C, and 30 ° C and setting the humidity control automatically by measuring at a temperature of 32 ° C, then measuring the results immediately. Sensors used to detect temperature are LM35 sensors and sensors used to detect humidity using DHT22. Based on the measurement results obtained uncertainty values ​​on the measurement of humidity 2.1, the measurement of temperature stability can be seen from the results of the graph which shows that the room temperature is not too influential at the temperature of the baby incubator. This study has shown the development of baby incubators to help mothers who have babies born prematurely so that they can have a good bond with how to treat skin to skin. This study has proven that its accuracy is appropriate to be used to stabilize the condition of babies born prematurely and help to treat PMK in some hospitals. In the future, this research can be made and used in small clinics in villages at low costs.
Syringe Pump With Nearly Empty Based Microcontroller Atmega328 Lely Erica Putri; Muhammad Ridha Mak'ruf; Abd Kholiq
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 1 No 2 (2019): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v1i2.5

Abstract

Syringe Pump is a tool used to give liquid medicine or food liquid into the patient's body in a certain amount and within a certain period of time on a regular basis. The purpose of this study is to facilitate monitoring of fluid in the syringe so that the hose is not installed continuously when the liquid has run out. The circuit consists of an Atmega328 microcontroller, a motor driver, and an optocoupler sensor. Setting the syringe, volume and flowrate is done at the beginning. To insert liquid, the motor must be run by the way the settings have been done and press the start button. Tools need supply from PLN grids. Calibration is done using IDA 4 Plus. This tool is equipped with the addition of alarms nearly empty and the bolus button. From the measurements taken, at the 20 ml syringe the biggest error occurred at the 5 ml volume point of 0.4% and at the 50 ml syringe the biggest error occurred at the 5 ml volume point of 0.280%.This module can be used according to its function, because the% error is still below the ± 5% standard.
DC SHOCK SIMULATOR Muhammad Amir Maruf; Bambang Guruh Irianto; Tri Bowo Indrato
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 1 No 2 (2019): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v1i2.4

Abstract

Defibrillators are electronic devices that carry shock electrical signals (pulses) to the heart muscle to maintain myocardial depolarization that is undergoing cardiac fibrillation (ventricular fibrillation or atrial fibrillation) (Bronzino, 2000). There are several conditions that must be met for the occurrence of shock processes including shock time, energy to be provided, patient and operator safety. In this defibrillator the use of selectors / energy selection is linear in the range 1-30 Joules with the use of tools at 10, 15, 20, 25, 30 Joules. The energy will then be discarded or given to the patient via a paddle when pressed the Discharge / shock button. The result of the signal given to the patient is monophasic. This study used a pre-experimental type with a One Group post test design research design. Measurements were made 5 times the volt meter at the test points determined by the compiler.

Page 1 of 1 | Total Record : 5