cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Electrical Engineering and Computer Science
ISSN : 25024752     EISSN : 25024760     DOI : -
Core Subject :
Arjuna Subject : -
Articles 63 Documents
Search results for , issue "Vol 14, No 1: April 2019" : 63 Documents clear
High gain boost converter with modified voltage multiplier for stand alone PV system Getzial Anbu Mani; A. K. Parvathy
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 1: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i1.pp185-192

Abstract

Boost converters of high gain are used for photo voltaic systems to obtain high efficiency. These high gain Boost converters gives increased output voltage for a low input produces high outputs for low input voltage. The High gain boost converters have the following merits. Conduction losses input current ripple and stress across the switches is reduced while the efficiency is increases. The high gain of the converters with the above said merits is obtained by changing the duty cycle of switches accordingly .In this paper a boost converter working with interleaved concept along with a additional Nstage voltage Multiplier has been carried out by simulation using MATLAB/ simulink and the mathematical modeling of various parameters is also done.
Multilayer neural network synchronized secured session key based encryption in wireless communication Arindam Sarkar; Joydeep Dey; Anirban Bhowmik
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 1: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i1.pp169-177

Abstract

Energy computation concept of multilayer neural network synchronized on derived transmission key based encryption system has been proposed for wireless transactions. Multilayer perceptron transmitting machines accepted same input array, which in turn generate a resultant bit and the networks were trained accordingly to form a protected variable length secret-key. For each session, different hidden layer of multilayer neural network is selected randomly and weights of hidden units of this selected hidden layer help to form a secret session key. A novel approach to generate a transmission key has been explained in this proposed methodology. The last thirty two bits of the session key were taken into consideration to construct the transmission key. Inverse operations were carried out by the destination perceptron to decipher the data. Floating frequency analysis of the proposed encrypted stream of bits has yielded better degree of security results. Energy computation of the processed nodes inside multi layered networks can be done using this proposed frame of work.
Convolutional neural network vs bag of features for bambara groundnut leaf disease recognition Hafizatul Hanin Hamzah; Nurbaity Sabri; Zaidah Ibrahim; Dino Isa
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 1: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i1.pp368-374

Abstract

This paper investigates bambara groundnut leaf disease recognition using two popular techniques known as Convolutional Neural Network (CNN) and Bag of Features (BOF) with Speeded-up Robust Feature (SURF) and Support Vector Machine (SVM) classifier.  Leaf disease recognition has attracted many researchers because the outcome is useful for farmers. One of the crops that provide high income for farmers is bambara groundnut but the leaves are easily infected with diseases especially after the rain.  This could affect the crop productivity.  Thus, automatic disease recognition is crucial.  A new dataset that consists of 400 images of the infected and non-infected leaves of bambara groundnut has been constructed. The experimental results indicate that both of these techniques produce excellent leaf disease recognition accuracy.
Hybrid enhanced ICA & KSVM based brain tumor image segmentation Thrivikram Bathini; Baswaraj Gadgay
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 1: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i1.pp478-489

Abstract

Medical image processing is an important aspect in diagnosis and treatment strategy. The tremendous volume of medical data has accelerated the need for automated analysis of this image, more so in the case Magnetic Resonance Imaging (MRI). An improved K-means algorithm and EM algorithm have been combined in the proposed approach to produce a hybrid strategy for better clustering and segmentation using Enhanced ICA. A classifier for based on Support Vector Machine (SVM) has been formulated and employed for the classification of brain tumors in Magnetic Resonance Images (MRI). The proposed SVM classifier used a kernel in the form of Gaussian radial basis function kernel (GRB kernel) to improve the classifier performance. The performance of the classifier has been validated through expert clinical opinion and calculation of performance measures. The results amply illustrate the suitability of the proposed classifier.
Research on neutral-point potential control of a three-level inverter Guangjie Fu; Xinpeng Li
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 1: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i1.pp20-28

Abstract

Diode-clamped three-level inverters have been widely used in high voltage and high power fields because of their unique advantages. Nowadays, diode-clamped three-level inverters have become a research hotspot. In order to reduce the content of energy harmonics injected into the power grid by the inverter system, the neutral point potential needs to be controlled. This paper proposes a control method based on a proportional controller. The voltage sector was redefined and the design of the proportional controller was completed. In combination with the introduction of a new PWM technology, a smooth control of the midpoint potential was achieved. The effectiveness of the method is verified by simulation in MATLAB
Comparing bags of features, conventional convolutional neural network and AlexNet for fruit recognition Nik Noor Akmal Abdul Hamid; Rabiatul Adawiya Razali; Zaidah Ibrahim
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 1: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i1.pp333-339

Abstract

This paper presents a comparative study between Bag of Features (BoF), Conventional Convolutional Neural Network (CNN) and Alexnet for fruit recognition.  Automatic fruit recognition can minimize human intervention in their fruit harvesting operations, operation time and harvesting cost.  On the other hand, this task is very challenging because of the similarities in shapes, colours and textures among various types of fruits. Thus, a robust technique that can produce good result is necessary. Due to the outstanding performance of deep learning like CNN and its pre-trained models like AlexNet in image recognition, this paper investigates the accuracy of conventional CNN, and Alexnet in recognizing thirty different types of fruits from a publicly available dataset.  Besides that, the recognition performance of BoF is also examined since it is one of the machine learning techniques that achieves good result in object recognition.   The experimental results indicate that all of these three techniques produce excellent recognition accuracy. Furthermore, conventional CNN achieves the fastest recognition result compared to BoF, and Alexnet.
Parametric studies of ring and parallel coupled line resonators for matched bandstop filter design Abdullah Mohammed Zobilah; Adib Othman; Noor Azwan Shairi; Zahriladha Zakaria
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 1: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i1.pp29-37

Abstract

Recently, matched bandstop filters had become a substantial part of modern RF and microwave systems. However, in these types of filters, the key problem in the couplings of any microstrip resonators to transmission microstrip line is the variation or tolerance of the coupling gap. It was found that the bandstop response is very sensitive to the gap size of the coupled line. Therefore, this paper presents parametric studies of dual-mode parallel coupled line and ring resonator for matched bandstop filter design. For parallel coupled line resonator, it was found that with careful design and proper circuit parametric study on the coupling spacing, very high notch and matched return loss response were obtained. In contrast, for ring resonator, based on the simulated result, it was found that a very high notch and matched return loss response were obtained with careful design and proper circuit parametric study on the coupling spacing, width at coupling lines, and perturbed stub length.
Linearity improvement of differential CMOS low noise amplifier Maizan Muhamad; Norhayati Soin; Harikrishnan Ramiah
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 1: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i1.pp407-412

Abstract

This paper presents the linearity improvement of differential CMOS low noise amplifier integrated circuit using 0.13um CMOS technology. In this study, inductively degenerated common source topology is adopted for wireless LAN application. The linearity of the single-ended LNA was improved by using differential structures with optimum biasing technique. This technique achieved better LNA and linearity performance compare with single-ended structure. Simulation was made by using the cadence spectre RF tool. Consuming 5.8mA current at 1.2V supply voltage, the designed LNA exhibits S21 gain of 18.56 dB, noise figure (NF) of 1.85 dB, S11 of −27.63 dB, S22 of -34.33 dB, S12 of −37.09 dB and IIP3 of -7.79 dBm.
A novel approach for selective feature mechanism for two-phase intrusion detection system B Narendra Kumar; M S V Sivarama Bhadri Raju; B Vishnu Vardhan
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 1: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i1.pp101-112

Abstract

Intrusion Detection is an important aspect to secure the computing systems from different intrusions. To improve the accuracy and to reduce the computational time, this paper proposes a two-phase hybrid method based on the SVM and RNN. In addition, this paper also had a proposal to obtain a few sets of features with a feature selection technique in which the detection performance increases. For the two-phase system, two different feature selection techniques were proposed which solves both the linear dependency and non-linear dependency between the features. In the first phase, the RNN combines with the proposed Joint Mutual Information Maximization (JMIM) based feature selection and in the second phase, the Support Vector Machine (SVM) combines with correlation based feature selection. Extensive simulations are carried out over the proposed system using two different datasets, NSL-KDD and Kyoto2006+. The performance is measured through the performance metrics such as Detection Rate (DR), Precision, False Alarm Rate (FAR), Accuracy and F-Score. Furthermore, a comparative analysis with few recent hybrid frameworks is also enumerated. The obtained results signify the effectiveness of proposed method.
Spatial domain image enhancement techniques for acute myeloid leukemia (M1,M4,M5,M7) A.S. A.Salam; M.N. M.Isa; M. I. Ahmad
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 1: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i1.pp250-257

Abstract

In this paper, several techniques of image enhancement spatial domain is elucidated and analyzed for the purpose of enhancing Acute Myeloid Leukemia (AML) subtype of M1, M4, M5 and M7. The techniques involved contrast stretching of greyscale images, image subtraction and image sharpening. The three methods compared with one another to achieve the highest PSNR value for the suitability technique of AML subtypes (M1, M4, M5 and M7). Firstly, subtypes images converted into grayscale. Then, each four images tested with contrast stretching techniques followed by image subtraction and image sharpening. The performances were evaluated based on Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). Due to its higher value obtained, image sharpening is a good enhancement techniques for Acute Myeloid Leukemia with 68.2083 dB and the lowest MSE achieved of 0.0103.

Filter by Year

2019 2019


Filter By Issues
All Issue Vol 40, No 2: November 2025 Vol 40, No 1: October 2025 Vol 39, No 3: September 2025 Vol 39, No 2: August 2025 Vol 39, No 1: July 2025 Vol 38, No 3: June 2025 Vol 38, No 2: May 2025 Vol 38, No 1: April 2025 Vol 37, No 3: March 2025 Vol 37, No 2: February 2025 Vol 37, No 1: January 2025 Vol 36, No 3: December 2024 Vol 36, No 2: November 2024 Vol 36, No 1: October 2024 Vol 35, No 3: September 2024 Vol 35, No 2: August 2024 Vol 35, No 1: July 2024 Vol 34, No 3: June 2024 Vol 34, No 2: May 2024 Vol 34, No 1: April 2024 Vol 33, No 3: March 2024 Vol 33, No 2: February 2024 Vol 33, No 1: January 2024 Vol 32, No 3: December 2023 Vol 32, No 1: October 2023 Vol 31, No 3: September 2023 Vol 31, No 2: August 2023 Vol 31, No 1: July 2023 Vol 30, No 3: June 2023 Vol 30, No 2: May 2023 Vol 30, No 1: April 2023 Vol 29, No 3: March 2023 Vol 29, No 2: February 2023 Vol 29, No 1: January 2023 Vol 28, No 3: December 2022 Vol 28, No 2: November 2022 Vol 28, No 1: October 2022 Vol 27, No 3: September 2022 Vol 27, No 2: August 2022 Vol 27, No 1: July 2022 Vol 26, No 3: June 2022 Vol 26, No 2: May 2022 Vol 26, No 1: April 2022 Vol 25, No 3: March 2022 Vol 25, No 2: February 2022 Vol 25, No 1: January 2022 Vol 24, No 3: December 2021 Vol 24, No 2: November 2021 Vol 24, No 1: October 2021 Vol 23, No 3: September 2021 Vol 23, No 2: August 2021 Vol 23, No 1: July 2021 Vol 22, No 3: June 2021 Vol 22, No 2: May 2021 Vol 22, No 1: April 2021 Vol 21, No 3: March 2021 Vol 21, No 2: February 2021 Vol 21, No 1: January 2021 Vol 20, No 3: December 2020 Vol 20, No 2: November 2020 Vol 20, No 1: October 2020 Vol 19, No 3: September 2020 Vol 19, No 2: August 2020 Vol 19, No 1: July 2020 Vol 18, No 3: June 2020 Vol 18, No 2: May 2020 Vol 18, No 1: April 2020 Vol 17, No 3: March 2020 Vol 17, No 2: February 2020 Vol 17, No 1: January 2020 Vol 16, No 3: December 2019 Vol 16, No 2: November 2019 Vol 16, No 1: October 2019 Vol 15, No 3: September 2019 Vol 15, No 2: August 2019 Vol 15, No 1: July 2019 Vol 14, No 3: June 2019 Vol 14, No 2: May 2019 Vol 14, No 1: April 2019 Vol 13, No 3: March 2019 Vol 13, No 2: February 2019 Vol 13, No 1: January 2019 Vol 12, No 3: December 2018 Vol 12, No 2: November 2018 Vol 12, No 1: October 2018 Vol 11, No 3: September 2018 Vol 11, No 2: August 2018 Vol 11, No 1: July 2018 Vol 10, No 3: June 2018 Vol 10, No 2: May 2018 Vol 10, No 1: April 2018 Vol 9, No 3: March 2018 Vol 9, No 2: February 2018 Vol 9, No 1: January 2018 Vol 8, No 3: December 2017 Vol 8, No 2: November 2017 Vol 8, No 1: October 2017 Vol 7, No 3: September 2017 Vol 7, No 2: August 2017 Vol 7, No 1: July 2017 Vol 6, No 3: June 2017 Vol 6, No 2: May 2017 Vol 6, No 1: April 2017 Vol 5, No 3: March 2017 Vol 5, No 2: February 2017 Vol 5, No 1: January 2017 Vol 4, No 3: December 2016 Vol 4, No 2: November 2016 Vol 4, No 1: October 2016 Vol 3, No 3: September 2016 Vol 3, No 2: August 2016 Vol 3, No 1: July 2016 Vol 2, No 3: June 2016 Vol 2, No 2: May 2016 Vol 2, No 1: April 2016 Vol 1, No 3: March 2016 Vol 1, No 2: February 2016 Vol 1, No 1: January 2016 Vol 16, No 3: December 2015 Vol 16, No 2: November 2015 Vol 16, No 1: October 2015 Vol 15, No 3: September 2015 Vol 15, No 2: August 2015 Vol 15, No 1: July 2015 Vol 14, No 3: June 2015 Vol 14, No 2: May 2015 Vol 14, No 1: April 2015 Vol 13, No 3: March 2015 Vol 13, No 2: February 2015 Vol 13, No 1: January 2015 Vol 12, No 12: December 2014 Vol 12, No 11: November 2014 Vol 12, No 10: October 2014 Vol 12, No 9: September 2014 Vol 12, No 8: August 2014 Vol 12, No 7: July 2014 Vol 12, No 6: June 2014 Vol 12, No 5: May 2014 Vol 12, No 4: April 2014 Vol 12, No 3: March 2014 Vol 12, No 2: February 2014 Vol 12, No 1: January 2014 Vol 11, No 12: December 2013 Vol 11, No 11: November 2013 Vol 11, No 10: October 2013 Vol 11, No 9: September 2013 Vol 11, No 8: August 2013 Vol 11, No 7: July 2013 Vol 11, No 6: June 2013 Vol 11, No 5: May 2013 Vol 11, No 4: April 2013 Vol 11, No 3: March 2013 Vol 11, No 2: February 2013 Vol 11, No 1: January 2013 Vol 10, No 8: December 2012 Vol 10, No 7: November 2012 Vol 10, No 6: October 2012 Vol 10, No 5: September 2012 Vol 10, No 4: August 2012 Vol 10, No 3: July 2012 More Issue