cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Electrical Engineering and Computer Science
ISSN : 25024752     EISSN : 25024760     DOI : -
Core Subject :
Arjuna Subject : -
Articles 9,138 Documents
Artificial neural network-based intelligent sensor-based electronic nose for food applications Managuli, Manjunath; Bagyalakshmi, Kalimuthu; Shiny Malar, Francis Rosy; Rubia, Jebaraj Jency; Iderus, Samat
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 1: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i1.pp163-173

Abstract

Food commerce, especially for the general public, is greatly impacted by the capacity to identify and recognize chemical samples for food applications. Every chemical sample response has a unique, distinguishing smell. These advancements highlight the method of an artificial neural networks (ANN) to distinguish the distinctive fragrance from the reaction of substances. The categorization of various smell patterns has diminished confidence in ANN technology. Using an ANN technique and a sensor-based e-nose system for food applications, each chemical’s identification has been done commercially. The system comprises a 5-gas sensor selection that recognizes chemical talk while allowing for an improvement in permitting while falling gas is planned outside. To build a model of a different signal reaction, individual sensors are equally collected and merged into the innovation -favored sensor array. Demonstrates how it is related to the chemical test. The e-nose categorization has been tested with five different chemical samples and five different sensor classes. The e-nose approach, which comprises five sensors, can classify each chemical reaction model, starting with the results. With more sensors being employed, the classification accuracy of the precise chemical reaction improves. These data demonstrate that the ANN-based e-nose method promises a successful classification system for chemical sample responses for a characteristic odor sample.
Leveraging transformer models for enhanced temperature forecasting: a comparative analysis in the Beni Mellal region Jdi, Hamza; Falih, Noureddine
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1694-1700

Abstract

The remarkable impact of transformers in artificial intelligence, exemplified by applications like GPT-3 in language processing, has sparked interest in their potential for time series analysis. This study aims to explore whether transformers, specifically temporal fusion transformers (TFT), can outperform conventional methods in this domain. The research question is whether TFT exhibits superior performance compared to conventional recurrent neural network (RNN) methods, specifically gated recurrent unit (GRU), and traditional machine learning approaches, notably autoregressive integrated moving average (ARIMA), in the context of time series analysis and temperature prediction. A comparative analysis is conducted among three models: ARIMA, GRU, and TFT. The study utilizes time series data spanning from 1984 to the end of 2022. The models’ performances are evaluated using multiple metrics: mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and the coefficient of determination (R2). The TFT model achieves the lowest MAE, indicating high accuracy in its predictions. It outperforms both the RNN and traditional machine learning in temperature prediction tasks. Integrating the TFT model with the FAO penman-monteith method could improve irrigation scheduling due to more accurate temperature predictions, potentially enhancing water efficiency and crop yields.
Photovoltaic inverters experimentally validate power quality mitigation in electrical systems Madake, Rajendra Bhimraj; Dhanaraj, Susitra
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 2: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i2.pp715-723

Abstract

Power quality is improved by utilizing solar inverters in electrical grids and this study probes it. A combination of the solar power system with wind energy management using the multi-objective particle swarm optimization (CMOPSO) algorithm is employed in this system. Control calculations are based on Clark and reverse Clark transformations and facilitated by a phase-locked loop (PLL) circuit. STATCOM helps maintain voltage levels and mitigate power quality issues. Power quality (PQ) monitoring tracks voltage variations and noise. Conversely, the study addresses challenges in integrating renewables using the multi-objective multi-verse optimization (MOMVO) algorithm. MATLAB is used for control, monitoring, and analysis. Results show voltage distortion, but the proposed method achieves 92% higher efficiency, demonstrating its effectiveness. This validates the importance of photovoltaic (PV) technology for integrating renewable energy sources.
Hesitant fuzzy clustering with convolutional spiking neural network for movie recommendations Shrivastava, Vineet; Kumar, Suresh
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1849-1856

Abstract

The movie recommender system is one of the most influential and practical tools for aiding individuals in quickly selecting films to watch. Despite numerous academic efforts to employ recommender systems for various purposes, such as movie-watching and book-buying, many studies have overlooked user-specific movie recommendations. This paper introduces a novel approach for movie recommendations that combines the hesitant fuzzy clustering with a convolutional spiking neural network movie recommender system. The initial step involves acquiring input data from benchmark datasets like MovieLens 100K and MovieLens 1M. Further, content-based features are extracted from the dataset using ternary pattern and discrete wavelet transforms. After that hesitant fuzzy linguistic Bi-objective clustering (HFLBC) is applied for cluster selection based on the extracted features. Subsequently, a movie recommender scheme utilizing a convolutional spiking neural network is introduced to predict user film preferences. The efficiency of the proposed model is compared to existing methods such as multi-modal trust-dependent recommender scheme and graph-dependent hybrid recommendation scheme. The results show a significant improvement, with the proposed model achieving 13.79% and 16.47% higher accuracy than the existing methods. The findings highlight the potential of proposed system in enhancing the accuracy and personalization of movie recommendations.
Exploring RoBERTa model for cross-domain suggestion detection in online reviews Nandula, Anuradha; Reddy, Panuganti Vijayapal
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i3.pp1637-1644

Abstract

Detecting suggestions in online review requires contextual understanding of review text, which is an important real-world application of natural language processing. Given the disparate text domains found in product reviews, a common strategy involves fine-tuning bidirectional encoder representations from transformers (BERT) models using reviews from various domains. However, there hasn't been an empirical examination of how BERT models behave across different domains in tasks related to detecting suggestion sentences from online reviews. In this study, we explore BERT models for suggestion classification that have been fine-tuned using single-domain and cross-domain Amazon review datasets. Our results indicate that while single-domain models achieved slightly better performance within their respective domains compared to cross-domain models, the latter outperformed single-domain models when evaluated on cross-domain data. This was also observed for single-domain data not used for fine-tuning the single-domain model and on average across all tests. Although fine-tuning single-domain models can lead to minor accuracy improvements, employing multi-domain models that perform well across domains can help in cold start problems and reduce annotation costs.
Sentiment analysis of student evaluation feedback using transformer-based language models Daqiqil ID, Ibnu; Saputra, Hendy; Syamsudhuha, Syamsudhuha; Kurniawan, Rahmad; Andriyani, Yanti
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 2: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i2.pp1127-1139

Abstract

This paper proposes an approach to sentiment analysis of student evaluation feedback using transformer-based language models. The primary objective of this study is to conduct an in-depth analysis of sentiment expressed in student evaluation feedback, with a focus on introducing contextual understanding into the sentiment classification process. In this research, four different variants of transformer language models were assessed, namely multilingual bidirectional encoder representations from transformers (MBERT), IndoBERT, RoBERTa Indonesia, and generative pre-trained transformer (GPT-2 Indonesia). Additionally, we also compared the performance of transformer models with two traditional models, namely support vector machine (SVM) and Naive Bayes (NB). The evaluation was conducted using feedback data collected from the Evaluasi Dosen oleh Mahasiswa (EDOM) system at Riau University, which had been categorized as either positive or negative. The outcomes indicate that IndoBERT base uncased exhibits the highest performance, with precision, accuracy, and recall values of 0.858, 0.929, and 0.911, respectively. This observation highlights the effectiveness of transformer-based language models in sentiment analysis of student evaluation feedback and provides insights for improving educational assessment practices.
Credit card fraud detection with advanced graph based machine learning techniques Renganathan, Krishna Kumari; Karuppiah, Janaki; Pathinathan, Mahimairaj; Raghuraman, Sudharani
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i3.pp1963-1975

Abstract

In the realm of credit card fraud detection, the landscape is continually evolving, demanding innovative approaches to stay ahead of increasingly sophisticated fraudulent activities. Our research pioneers a groundbreaking methodology that amalgamates the power of bipartite graph visualization with advanced machine learning techniques. This fusion yields a comprehensive framework capable of effectively evaluating the efficacy of a random forest classifier in uncovering fraudulent credit card transactions. Our study showcases the compelling application of this methodology, offering a paradigm shift in how we analyze and understand credit card fraud detection systems. By seamlessly integrating machine learning algorithms with network analysis, we provide a holistic view of the data, unveiling intricate patterns hidden within. At the heart of our approach lies the innovative use of bipartite graphs, which serve as a dynamic visual bridge between model predictions and real-world outcomes. This visual representation not only enhances interpretability but also facilitates a deeper understanding of the classifier’s performance. By visually mapping the relationships between transactions and their respective classifications, our methodology offers actionable insights into both successful detection and potential areas for improvement. Empowering analysts and stakeholders, our approach facilitates informed decision-making by enabling them to fine-tune model parameters and enhance the overall effectiveness of fraud detection systems. Through this synergy between cutting-edge machine learning and network analysis techniques, we provide a powerful tool to combat the critical challenge of credit card fraud prevention. Step into the future of fraud detection with our innovative methodology, where every transaction is scrutinized with precision, and where security is not just a possibility, but a promise fulfilled.
Experimental of information gain and AdaBoost feature for machine learning classifier in media social data Jasmir, Jasmir; Abidin, Dodo Zaenal; Fachruddin, Fachruddin; Riyadi, Willy
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 2: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i2.pp1172-1181

Abstract

In this research, we use several machine learning methods and feature selection to process social media data, namely restaurant reviews. The selection feature used is a combination of information gain (IG) and adaptive boosting (AdaBoost) which is used to see its effect on the classification performance evaluation value of machine learning methods such as Naïve Bayes (NB), K-nearest neighbor (KNN), and random forest (RF) which is the aim of this research. NB is very simple and efficient and very sensitive to feature selection. Meanwhile, KNN is known for its weaknesses such as biased k values, overly complex computation, memory limitations, and ignoring irrelevant attributes. Then RF has weaknesses, including that the evaluation value can change significantly with only small data changes. In text classification, feature selection can improve the scalability, efficiency and accuracy of text classification. Based on tests that have been carried out on several machine learning methods and a combination of the two selection features, it was found that the best classifier is the RF algorithm. RF produces a significant increase in value after using the IG and AdaBoost features. Increased accuracy by 10%, precision by 12.43%, recall by 8.14% and F1-score by 10.37%. RF also produces even accuracy, precision, recall, and F1-score values after using IG and AdaBoost with an accuracy value of 84.5%; precision of 85.58%; recall was 86.36%; and F1-score was 85.97%.
Enhancing clinical decision-making with cloud-enabled integration of image-driven insights Senkamalavalli, Rajagopalan; Sankar, Singaravel; Parivazhagan, Alaguchamy; Raja, Raju; Selvaraj, Yoganand; Srinivas, Porandla; Varadarajan, Mageshkumar Naarayanasamy
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 1: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i1.pp338-346

Abstract

Using the complementary strengths of Bayesian networks, decision trees, artificial neural networks (ANNs), and Markov models, this endeavor intends to completely revamp clinical decision-making. In order to provide instantaneous access to image-driven insights and clinical decision support systems (CDSS), want to create a revolutionary framework that merges these cutting-edge methods with cloud-enabled technologies. The proposed framework gives a comprehensive perspective of patient data by merging the probabilistic reasoning of Bayesian networks with the interpretability of decision trees, the pattern recognition abilities of ANNs, and the temporal interdependence of Markov models. This helps doctors to make more educated judgments based on a larger spectrum of information, leading to better patient outcomes. Healthcare workers can get to vital data from any place because to the cloud-enabled architecture's seamless scalability and accessibility. This not only increases the efficiency of decision-making, but also improves communication and cooperation between different medical professionals. This uses cutting-edge modeling strategies and cloud computing to pave a new path in clinical decision-making. This system has the potential to greatly enhance healthcare by integrating image-driven insights with CDSS, to the advantage of both patients and healthcare practitioners.
Pavement health 4.0: a novel AI-enabled PavementVision approach for pavement health monitoring and classification Soni, Jaykumar; Gujar, Rajesh; Malek, Mohammed Shakil
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 2: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i2.pp1163-1171

Abstract

To determine the extent of pavement damage and forms of pavement distress, road pavement conditions must be precisely assessed. As a result, monitoring systems are regarded as an important stage in the maintenance procedure. In recent times, numerous investigations have been carried out to track the condition of pavement and monitor road surfaces. In the undertaken study, we have proposed a novel artificial intelligent (AI) and computer vision-enabled PavementCarevision 4.0 approach to detect and classify pavement health conditions i.e., defects. In this study, a customized pavement-2000 dataset has been designed which contains more than 2,000 images of a variety of pavement defects. In the initial phase, we pre-processed and enhanced pavement images using the customized adjustable linear contrast enhancement methodology. The enhanced pavement image samples were fed to the proposed customized YOLOV8 enabled PavementHealth 4.0 framework for pavement condition detection of a variety of pavement defects such as longitudinal cracks, alligator cracks, transverse cracks, and potholes. The proposed customized YOLOV8 enabled PavementHealth 4.0 framework has achieved an accuracy of 99.20 percent; an receiver operating characteristic (ROC) value of 0.98 and outperformed existing AI-based state-of-the-art methodologies such as pose NET, YOLOv7, YOLOv5, long short-term memory network (LSTM), Mask region-based convolutional neural network (R-CNN), and decision tree.

Filter by Year

2012 2026


Filter By Issues
All Issue Vol 41, No 1: January 2026 Vol 40, No 3: December 2025 Vol 40, No 2: November 2025 Vol 40, No 1: October 2025 Vol 39, No 3: September 2025 Vol 39, No 2: August 2025 Vol 39, No 1: July 2025 Vol 38, No 3: June 2025 Vol 38, No 2: May 2025 Vol 38, No 1: April 2025 Vol 37, No 3: March 2025 Vol 37, No 2: February 2025 Vol 37, No 1: January 2025 Vol 36, No 3: December 2024 Vol 36, No 2: November 2024 Vol 36, No 1: October 2024 Vol 35, No 3: September 2024 Vol 35, No 2: August 2024 Vol 35, No 1: July 2024 Vol 34, No 3: June 2024 Vol 34, No 2: May 2024 Vol 34, No 1: April 2024 Vol 33, No 3: March 2024 Vol 33, No 2: February 2024 Vol 33, No 1: January 2024 Vol 32, No 3: December 2023 Vol 32, No 1: October 2023 Vol 31, No 3: September 2023 Vol 31, No 2: August 2023 Vol 31, No 1: July 2023 Vol 30, No 3: June 2023 Vol 30, No 2: May 2023 Vol 30, No 1: April 2023 Vol 29, No 3: March 2023 Vol 29, No 2: February 2023 Vol 29, No 1: January 2023 Vol 28, No 3: December 2022 Vol 28, No 2: November 2022 Vol 28, No 1: October 2022 Vol 27, No 3: September 2022 Vol 27, No 2: August 2022 Vol 27, No 1: July 2022 Vol 26, No 3: June 2022 Vol 26, No 2: May 2022 Vol 26, No 1: April 2022 Vol 25, No 3: March 2022 Vol 25, No 2: February 2022 Vol 25, No 1: January 2022 Vol 24, No 3: December 2021 Vol 24, No 2: November 2021 Vol 24, No 1: October 2021 Vol 23, No 3: September 2021 Vol 23, No 2: August 2021 Vol 23, No 1: July 2021 Vol 22, No 3: June 2021 Vol 22, No 2: May 2021 Vol 22, No 1: April 2021 Vol 21, No 3: March 2021 Vol 21, No 2: February 2021 Vol 21, No 1: January 2021 Vol 20, No 3: December 2020 Vol 20, No 2: November 2020 Vol 20, No 1: October 2020 Vol 19, No 3: September 2020 Vol 19, No 2: August 2020 Vol 19, No 1: July 2020 Vol 18, No 3: June 2020 Vol 18, No 2: May 2020 Vol 18, No 1: April 2020 Vol 17, No 3: March 2020 Vol 17, No 2: February 2020 Vol 17, No 1: January 2020 Vol 16, No 3: December 2019 Vol 16, No 2: November 2019 Vol 16, No 1: October 2019 Vol 15, No 3: September 2019 Vol 15, No 2: August 2019 Vol 15, No 1: July 2019 Vol 14, No 3: June 2019 Vol 14, No 2: May 2019 Vol 14, No 1: April 2019 Vol 13, No 3: March 2019 Vol 13, No 2: February 2019 Vol 13, No 1: January 2019 Vol 12, No 3: December 2018 Vol 12, No 2: November 2018 Vol 12, No 1: October 2018 Vol 11, No 3: September 2018 Vol 11, No 2: August 2018 Vol 11, No 1: July 2018 Vol 10, No 3: June 2018 Vol 10, No 2: May 2018 Vol 10, No 1: April 2018 Vol 9, No 3: March 2018 Vol 9, No 2: February 2018 Vol 9, No 1: January 2018 Vol 8, No 3: December 2017 Vol 8, No 2: November 2017 Vol 8, No 1: October 2017 Vol 7, No 3: September 2017 Vol 7, No 2: August 2017 Vol 7, No 1: July 2017 Vol 6, No 3: June 2017 Vol 6, No 2: May 2017 Vol 6, No 1: April 2017 Vol 5, No 3: March 2017 Vol 5, No 2: February 2017 Vol 5, No 1: January 2017 Vol 4, No 3: December 2016 Vol 4, No 2: November 2016 Vol 4, No 1: October 2016 Vol 3, No 3: September 2016 Vol 3, No 2: August 2016 Vol 3, No 1: July 2016 Vol 2, No 3: June 2016 Vol 2, No 2: May 2016 Vol 2, No 1: April 2016 Vol 1, No 3: March 2016 Vol 1, No 2: February 2016 Vol 1, No 1: January 2016 Vol 16, No 3: December 2015 Vol 16, No 2: November 2015 Vol 16, No 1: October 2015 Vol 15, No 3: September 2015 Vol 15, No 2: August 2015 Vol 15, No 1: July 2015 Vol 14, No 3: June 2015 Vol 14, No 2: May 2015 Vol 14, No 1: April 2015 Vol 13, No 3: March 2015 Vol 13, No 2: February 2015 Vol 13, No 1: January 2015 Vol 12, No 12: December 2014 Vol 12, No 11: November 2014 Vol 12, No 10: October 2014 Vol 12, No 9: September 2014 Vol 12, No 8: August 2014 Vol 12, No 7: July 2014 Vol 12, No 6: June 2014 Vol 12, No 5: May 2014 Vol 12, No 4: April 2014 Vol 12, No 3: March 2014 Vol 12, No 2: February 2014 Vol 12, No 1: January 2014 Vol 11, No 12: December 2013 Vol 11, No 11: November 2013 Vol 11, No 10: October 2013 Vol 11, No 9: September 2013 Vol 11, No 8: August 2013 Vol 11, No 7: July 2013 Vol 11, No 6: June 2013 Vol 11, No 5: May 2013 Vol 11, No 4: April 2013 Vol 11, No 3: March 2013 Vol 11, No 2: February 2013 Vol 11, No 1: January 2013 Vol 10, No 8: December 2012 Vol 10, No 7: November 2012 Vol 10, No 6: October 2012 Vol 10, No 5: September 2012 Vol 10, No 4: August 2012 Vol 10, No 3: July 2012 More Issue