cover
Contact Name
Artoto Arkundato
Contact Email
cerimre.journal@unej.ac.id
Phone
+62331-334293
Journal Mail Official
cerimre.journal@unej.ac.id
Editorial Address
Jurusan Fisika, FMIPA, Universitas Jember Jalan Kalimantan No.37, Krajan Timur, Jember Lor, Kecamatan Sumbersari, Kabupaten Jember, Jawa Timur 68121
Location
Kab. jember,
Jawa timur
INDONESIA
Computational and Experimental Research in Materials and Renewable Energy (CERiMRE)
Published by Universitas Jember
ISSN : -     EISSN : 2747173X     DOI : https://doi.org/10.19184/cerimre.v3i2.23544
Core Subject : Science,
Computational and Experimental Research in Materials and Renewable Energy (CERiMRE) journal receives scientific articles of experimental and/or computational research that using many tools and methods as computational methods (Micromagnetic simulation, DFT Density Functional Theory, MD molecular dynamics, CFD computational fluid dynamics, MC Monte Carlo, FEM finite element method, transport neutron equation, etc) and standard experimental tools and analysis (FTIR, XRD, EDAX, bending test, etc) to develop potential applications of new materials and renewable energy sources. The materials and renewable energy under investigation may show: Prediction of material properties for new potential applications as electronics materials, photonics materials, magnetic materials, spintronics materials, optoelectronics materials, nuclear materials, thermoelectric materials, etc. Exploration of new design of renewable energy resources as in nuclear power plants, solar cell, fuel cells, biomass, thermoelectric generators, nuclear batteries, wind, wave, geothermal, etc.
Articles 5 Documents
Search results for , issue "Vol 2 No 2 (2019): November" : 5 Documents clear
Effect of Angle of Attack on Pressure and Lift Coefficient of ONERA OA206 Wing Model Using Computational Fluid Dynamics Method Anggraeni, Resti
Computational And Experimental Research In Materials And Renewable Energy Vol 2 No 2 (2019): November
Publisher : Physics Department, Faculty of Mathematics and Natural Sciences, University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/cerimre.v2i2.27374

Abstract

In this study, we computed the lift force of the aircraft with ONERA OA206 airfoil type. It was positioned at 0%, 25%, 50%, 75%, and 100% of the wingspan for Angle of Attack (AoA) variations of 0o, 4o, 8o, 12o, and 16o. The research was to determine the effect of AoA on pressure, pressure coefficient (Cp), and lift coefficient (CL) on the ONERA OA206 aircraft wing. It shows that the greater AoA on the result of the pressure contour causes the increase in the difference of span at AoA 0o to 16o t these are 0.25%; 0.26%; 0.43%; 0.52%; and 0.53%. Through the graph of the pressure coefficient (Cp) against x/c, it can be seen that the greater AoA, the expansion point, and the stagnation point will shift to the right with the direction of x/c. In addition, the Cp at the lower is greater than the upper of the airfoil. Based on the research results, it was found that CL at the position of 0% to 50% increased when given AoA from 0o to 12o (CL max) and decreased at AoA = 16o (stall). Meanwhile, CL at 75% to 100% increased when given AoA from 0o to 8o (CL max) and decreased at AoA = 12o (stall). With these results, it can be concluded that the maximum AoA that can be applied to the wing of the ONERA OA206 aircraft is 8o. The closer to the end position of the airfoil, the higher the CL measured.
Optimation of Layers Thickness Design of Perovskite Solar Cell (PSC) Using GPVDM Simulation Puspita, Dita
Computational And Experimental Research In Materials And Renewable Energy Vol 2 No 2 (2019): November
Publisher : Physics Department, Faculty of Mathematics and Natural Sciences, University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/cerimre.v2i2.27366

Abstract

In this research, perovskite solar cells by configuring ITO/PEDOT:PSS/CH3NH3PbI3/ZnO/Al changed to optimize their performance. Modifications are made by varying the thickness of each layer to increase the ideal thickness with an optimal power conversion efficiency (PCE) value. This research used GPVDM software to study several power conversion efficiency (PCE) parameters of ITO/PEDOT:PSS/CH3NH3PbI3/ZnO/Al solar cells. The results of the study show that the power conversion efficiency (PCE) can be increased by adjusting the thickness of the coating, in this study the ideal thickness with the highest power conversion efficiency 25.75% in 1x10-8 m of ITO, 1x10-6 m of PEDOT:PSS, 4x10-7 m of CH3NH3PbI3, 1x10-8 m of ZnO and 1x10-9 m of Al.
Study of Neptunium, Americium and Protactinium Addition for 300MWth GFR with Uranium Carbide Fuel Syarifah, Ratna Dewi; Sabrina, Alvi Nur
Computational And Experimental Research In Materials And Renewable Energy Vol 2 No 2 (2019): November
Publisher : Physics Department, Faculty of Mathematics and Natural Sciences, University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/cerimre.v2i2.27368

Abstract

A study of Neptunium, Americium, and Protactinium addition for GFR 300MWth with Uranium Carbide fuel has been performed. The purpose of this study was to determine the characteristics of addition Neptunium, Americium, and Protactinium in a 300MWth Gas-Cooled Fast Reactor. Neutronics calculation was design by using Standard Reactor Analysis Code (SRAC) version 2006 with data nuclides from JENDL-4.0. Neutronics calculations were initiated by calculating the fuel cell calculation (PIJ calculation) and continued with the reactor core calculation (CITATION calculation). The reactor core calculation used two-reactor core configurations, namely the homogeneous core configuration and heterogeneous core configuration. The Neptunium, Americium, and Protactinium additions were performed after obtaining the optimal condition from heterogeneous core configuration. The addition of Neptunium and Americium which are Spent Nuclear Fuel (SNF) from LWR fuels, aims to reduce the amount of Neptunium and Americium in the world and also to reduce the effective multiplication factor (k-eff) value from the reactor. The results obtained that the addition of Neptunium and Americium causes the k-eff value was decreased at the beginning of burn-up time, but increase at the end of burn-up time. It was because Neptunium and Americium absorb neutrons at the beginning of burn-up time and turns into fissile material at the end of burn-up time. The addition of protactinium in the reactor causes the k-eff value to be decreased both at the beginning of the burn-up time and at the end of the burn-up time. It happens because Protactinium absorbs neutrons both at the beginning of the burn-up time and at the end of the burn-up time. Therefore protactinium is often called a burnable poison.
Effects of Intrinsic Layer Thickness on the Short-Circuit Current Density of Crystalline Silicon-Based Solar Cells Soleha, Imroatus; Purwandari, Endhah; Haryati, Endang
Computational And Experimental Research In Materials And Renewable Energy Vol 2 No 2 (2019): November
Publisher : Physics Department, Faculty of Mathematics and Natural Sciences, University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/cerimre.v2i2.27373

Abstract

The amount of short-circuits current density (Jsc) shown in the results of the electrical characterization of silicon (c:Si)-based solar cell diodes is one of the determinants of device performance. Efforts to increase Jsc are carried out by adding pure silicon to the diode junction, thereby increasing the magnitude of photoelectron generation in the material. In this paper, the insertion of an intrinsic semiconductor at various thicknesses will be analyzed for its effect on the characteristics of the resulting current-voltage density. By using a 2D simulation based on the finite element method, the solution to the equation of a solar cell semiconductor with a p-i-n junction structure becomes the basis for calculating the resulting electric current density. The thickness variation of the simulated layer i ranges from 1 μm to 15 μm, with a constant thickness of p and n layers of 0.4 m. The simulation results show that the reduced thickness of the intrinsic layer has a significant effect on the decrease in short-circuit current density.
Magnetic Susceptibility of Ferromagnetic Alloy Material Co (1-x) Ni (x) Nanocube and Nanosphere Models Wahyudi, Imam; Rohman, Lutfi; Purwandari, Endhah
Computational And Experimental Research In Materials And Renewable Energy Vol 2 No 2 (2019): November
Publisher : Physics Department, Faculty of Mathematics and Natural Sciences, University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/cerimre.v2i2.28539

Abstract

A hard disk is a data storage medium composed of a thin layer of magnetic material. Hard drives take advantage of the characteristics of magnetic materials that are stable to heat and have sensitivity to magnetic fields. One of the best materials to use a thin layer ferromagnetic on a hard disk is CoNi alloy. Hard drives with larger storage capacities require magnetic materials with high magnetic susceptibility values and Curie temperatures to obtain the best magnetic properties. The magnetic susceptibility of alloy ferromagnetic material Co (1- x) Ni (x) nanocube and nanosphere is calculated using vampire-based micro magnetic simulation. The research was conducted using a literature review on the parameters of the CoNi alloy material, and then it was simulated in the vampire program. The data generated from the simulation are magnetic susceptibility (1/tesla) and temperature (K). The spectrum of the magnetic susceptibility graph that shifts to the right as the Ni (x) composition decreases, it is assumed that the higher Curie temperature is produced. Otherwise, The increase in Ni (x) composition causes the magnetic susceptibility spectrum to shift to the left, with the Curie temperature's predicted value getting minor than the other. The nanocube-shaped material has a higher susceptibility value than the nanosphere-shaped material in terms of each Ni (x) composition variation at its maximum magnetic susceptibility.

Page 1 of 1 | Total Record : 5