cover
Contact Name
Alfian Ma'arif
Contact Email
alfian.maarif@te.uad.ac.id
Phone
-
Journal Mail Official
ijrcs@ascee.org
Editorial Address
Jalan Janti, Karangjambe 130B, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Robotics and Control Systems
ISSN : -     EISSN : 27752658     DOI : https://doi.org/10.31763/ijrcs
Core Subject : Engineering,
International Journal of Robotics and Control Systems is open access and peer-reviewed international journal that invited academicians (students and lecturers), researchers, scientists, and engineers to exchange and disseminate their work, development, and contribution in the area of robotics and control technology systems experts. Its scope includes Industrial Robots, Humanoid Robot, Flying Robot, Mobile Robot, Proportional-Integral-Derivative (PID) Controller, Feedback Control, Linear Control (Compensator, State Feedback, Servo State Feedback, Observer, etc.), Nonlinear Control (Feedback Linearization, Sliding Mode Controller, Backstepping, etc.), Robust Control, Adaptive Control (Model Reference Adaptive Control, etc.), Geometry Control, Intelligent Control (Fuzzy Logic Controller (FLC), Neural Network Control), Power Electronic Control, Artificial Intelligence, Embedded Systems, Internet of Things (IoT) in Control and Robot, Network Control System, Controller Optimization (Linear Quadratic Regulator (LQR), Coefficient Diagram Method, Metaheuristic Algorithm, etc.), Modelling and Identification System.
Articles 361 Documents
Intelligent Observer-Based Controller Design for Nonlinear Type-1 Diabetes Model via Adaptive Neural Network Method Elham Rahimi Khoygani; Mohammad Reza Rahimi Khoygani; Reza Ghasemi
International Journal of Robotics and Control Systems Vol 1, No 3 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v1i3.442

Abstract

Diabetes is an increasing health problem all around the world, particularly Type 1 diabetes (T1D), people with T1D require precise glycemic control, due to a shortage of insulin production. This paper introduces a new adaptive neural observer-based controller for a class of nonlinear T1D systems. A solution is proposed to guarantees practical tracking of a desired glucose concentration by a new adaptive neural observer-based control strategy. One of the intelligence procedures is the network under online learning that the mentioned controller is learned by a back-propagation algorithm. This network is a significant class of feed-forward artificial neural networks that maps a set of inputs into a set of proper outputs. Guarantee stability of observer and controller by Lyapunov direct and training online are the merit of the method. Also, despite the presence of internal and external uncertainties, the multilayer perceptron neural observer-based controller is robust. The performance of the proposed method is hopeful based on the results.
Maximum Torque per Ampere Control of Permanent Magnet Assisted Synchronous Reluctance Motor: An Experimental Study Yasmine Ihcene Nadjai; Hafiz Ahmed; Noureddine Takorabet; Peyman Haghgooei
International Journal of Robotics and Control Systems Vol 1, No 4 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v1i4.451

Abstract

In recent times, permanent magnet assisted synchronous reluctance motors (PMaSRM) have been considered as suitable traction motors for electric vehicle applications. In this type of machine, where the share of reluctance torque is more significant than the excitation torque, it is more appropriate to use a control strategy that can fully utilize the reluctance torque. This paper deals with a new structure of permanent magnet-assisted synchronous reluctance motors that was designed and manufactured in a previous study. This paper suggests applying, in a first study, a constant parameter maximum torque per ampere (MTPA) strategy to make a contribution towards the control of such structure that is becoming increasingly attractive in the field of electric transportation. This method is usually used to control interior permanent magnet synchronous motors to minimize the copper losses of the system. Before implementing and simulating this method, the mathematical models of the suggested motor and the inverter are given. An experimental study is conducted on a small-scale 1 kW prototype PMaSRM using a MicrolabBox Dspace to test and examine the proposed control. Simulation and experimental results are presented in this article in order to verify the validity of the developed control strategy.
Thermal Effects on the Nonlinear Forced Responses of Hinged-Clamped Beam with Multimodal interaction Ahoudou Ngamie Ndoukouo; G. Serges Mbouna Ngueuteu
International Journal of Robotics and Control Systems Vol 1, No 3 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v1i3.422

Abstract

Nonlinear analysis of a forced geometrically nonlinear Hinged-Clamped beam involving three modes interactions with internal resonance and submitted to thermal and mechanical loadings is investigated. Based on the extended Hamilton’s principle, the PDEs governing the thermoelastic vibration of planar motion is derived. Galerkin’s orthogonalization method is used to reduce the governing PDEs of motion into a set of nonlinear non-autonomous ordinary differential equations. The system is solved for the three modes involved by the use of the multiple scales method for amplitudes and phases. For steady states responses, the Newton-Raphson shooting technique is used to solve the three systems of six parametric nonlinear algebraic equations obtained. Results are presented in terms of influences of temperature variations on the response amplitudes of different substructures when each of the modes is excited. It is observed for all substructures and independent of the mode excited a shift within the frequency axis of the temperature influenced amplitude response curves on either side of the temperature free-response curve. Moreover, it is found that thermal loads diversely influence the interacting substructures. Depending on the directly excited mode, higher oscillation amplitudes are found in some substructures under negative temperature difference, while it is observed in others under positive temperature change and in some others for temperature free-response curves.
A New Architecture of Autonomous Vehicles: Redundant Architecture to Improve Operational Safety Anis Boubakri; Sonia Mettali Gamar
International Journal of Robotics and Control Systems Vol 1, No 3 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v1i3.437

Abstract

The internet of things allows having the comfort of these users. However, the number of connected objects is increasing exponentially. There is therefore a risk of degrading the quality of comfort by the phenomena of the non-availability of communication services. These days, with digital networking and agility in the words, autonomous vehicles, are a particular case of the Internet of Things, represent the vehicles of tomorrow, to increase a penetration rate into the market and make marketed (level 5) in EV (Electric vehicle). We must think to study its reliability and availability. Autonomous vehicles that have a level 5 autonomous drive system, must exhibit a high degree of reliability. In this paper, we propose a new architecture based on redundancy, to increase the dependability and minimize the risk of having a breakdown. We also propose a communication strategy allowing the minimization of the message rate abandoned by sharing messages on a different network and switching between DSRC and C-V2X.
A New Approach to Fault Detection in the Power Converter in Wind Turbine Conversion Systems Abada Zhour; Ghoudelbourk Sihem; DIB Djalel
International Journal of Robotics and Control Systems Vol 1, No 4 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v1i4.443

Abstract

The detection of faults in a wind turbine chain is of prime importance in order to maintain safety, enhance reliability and improve economic performance. In addition, wind systems have to ensure a continuity of service for a considerable period of time in the event of an electrical fault in the network or a fault in one of the elements of the electromechanical conversion system. This paper presents a fault detection methodology of the power converter within a wind turbine chain, equipped with a Doubly-Fed Induction Generator (DFIG). A configurable, fast, and accurate scheme is developed, the basis of which is the reliable identification of the failed switch. The solution proposed in this work involves the deployment of a redundant arm in the event of a fault; the replacement arm is utilized while waiting for a maintenance or repair operation to be carried out. The approach developed in this paper provides continuity of service after the occurrence of a fault in the network system and fault detection time is reduced. The validity of the proposed identification methodology is assessed by means of simulation of the model of a wind turbine conversion system.
Exploration of Applying Lego NXT and Arduino in Situated Engineering Teaching: A Case Study of a Robotics Contest at King Saud University Haykel Marouani
International Journal of Robotics and Control Systems Vol 2, No 1 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i1.508

Abstract

Saudi students in engineering courses suffer from a lack of science, technology, engineering, and mathematics (STEM) knowledge due to the teaching philosophy and programs offered in secondary and intermediate schools. This weakness naturally impacts their motivation, grades, and their relationship with teachers. In this paper, we introduce a new experimental teaching experience in the Applied Mechanical Department of the Applied Engineering College of King Saud University, based on situated learning theory, which emphasizes that knowledge must be learned in constructed situational context). This experience involved introducing Lego NXT and Arduino to enhance the enthusiasm and interest of students through designing and building robots in agreement with the “Introduction to design” course syllabus. Two experimental challenges were associated with: the line-follower problem and the maze problem. These challenges took the form of an internal completion at the end of each semester. The experience was conducted for two consecutive terms (30 students, the academic year 2019-2020), and the results were compared to those in six previous terms (100 students, academic years from 2016 to 2019). The experimental group demonstrated grades improvement (course mean grade rose from 77.1 to 85.3), the progress of academic achievement, and interest that enables them to actively explore and construct knowledge.
Treatment of Bone Marrow Cancer Based on Model Predictive Control Ehsan Salajegheh; Sepide Mojalal; Ali Mojarrad Ghahfarokhi
International Journal of Robotics and Control Systems Vol 1, No 4 (2021)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v1i4.481

Abstract

Bone marrow is a spongy tissue that contains stem cells that are found inside some bones, including the hip and femur. Bone marrow cancer is a type of cancer that is caused by stem cells that make up the blood cells in the bone marrow. Sometimes these cells grow too fast or abnormally, which is called bone marrow cancer. Bone tissue cells are mainly composed of osteoblasts and osteoclasts. Osteoblast cells constantly build new bone throughout the life of each bone, and other cells called osteoclasts constantly absorb pieces of bone, so the bone is constantly being renewed. In this paper, mathematical models of tumors, the effect of the body on the drug, and the drug on the body are introduced, and then the appropriate dose of the drug to reduce tumor density is calculated using the model predictive control (MPC) algorithm. To obtain an adaptive MPC strategy, the extended least squares (ELS) method developed to learn the parameters of the tumor growth model is used. Finally, the simulation in MATLAB, assuming the model is correct, shows that the tumor is gone, and the bone mass improves over a period of time. The results demonstrate that the proposed method is effective for the treatment of bone marrow cancer.
An Autonomous Pesticide Sprayer Robot with a Color-based Vision System Mona Tahmasebi; Mohammad Gohari; Alireza Emami
International Journal of Robotics and Control Systems Vol 2, No 1 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i1.480

Abstract

The usage of robots has been due to cost reduction and increasing operation accuracy. Furthermore, employing robots in farming can decrease human tasks in hard and dangerous duties such as plowing, spraying pesticides, etc. Spraying chemicals is a common operation in agriculture crop protection. This operation is essential, but it can create some problems such as human and environmental damages by overdosing using pesticides. Recently, researchers focused on precision agriculture to make this smart. Sensors are employed to detect leaves of plants on the ground and spray them as much as required. Thus, pesticide dose will be under control. The current paper aims to introduce a wheeled robot that is developed to detect plants by color sensor and spray them. This robot can move between planting rows and detect weeds based on the leave color. A microcontroller-based board was used as the main controller, which sends spray commands to the sprayer nozzle. Outdoor and indoor tests were carried out to study the accuracy of this system. Results of experiments showed that this robot could work with acceptable accuracy in identifying weeds in the field. Thus, this robot can be commercialized for applying in the field to spray pesticides.
Pinning Decision in Interconnected Systems with Communication Disruptions under Multi-Agent Distributed Control Topology Samson S. Yu; Tat Kei Chau
International Journal of Robotics and Control Systems Vol 2, No 1 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i1.514

Abstract

In this study, we propose a decision-making strategy for pinning-based distributed multi-agent (PDMA) automatic generation control (AGC) in islanded microgrids against stochastic communication disruptions. The target microgrid is construed as a cyber-physical system, wherein the physical microgrid is modeled as an inverter-interfaced autonomous grid with detailed system dynamic formulation, and the communication network topology is regarded as a cyber-system independent of its physical connection. The primal goal of the proposed method is to decide the minimum number of generators to be pinned and their identities amongst all distributed generators (DGs). The pinning-decisions are made based on complex network theories using the genetic algorithm (GA), for the purpose of synchronizing and regulating the frequencies and voltages of all generator bus-bars in a PDMA control structure, i.e., without resorting to a central AGC agent. Thereafter, the mapping of cyber-system topology and the pinning decision is constructed using deep-learning (DL) technique, so that the pinning-decision can be made nearly instantly upon detecting a new cyber-system topology after stochastic communication disruptions. The proposed decision-making approach is verified using a 10-generator, 38-bus microgrid through time-domain simulation for transient stability analysis. Simulations show that the proposed pinning decision making method can achieve robust frequency control with minimum number of active communication channels.
Methodologies and Applications of Artificial Intelligence in Systems Engineering Awatef K. Ali; MagdiSadek Mostafa Mahmoud
International Journal of Robotics and Control Systems Vol 2, No 1 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i1.532

Abstract

This paper presents an overview of the methodologies and applications of artificially intelligent systems (AIS) in different engineering disciplines with the objective of unifying the basic information and outlining the main features. These are knowledge-based systems (KBS), artificial neural networks (ANN), and fuzzy logic and systems (FLS). To illustrate the concepts, merits, and demerits, a typical application is given from each methodology. The relationship between ANN and FLS is emphasized. Two recent developments are finally presented: one is intelligent and autonomous systems (IAS) with particular emphasis on intelligent vehicle and highway systems, and the other is the very large scale integration (VLSI) systems design, verification, and testing.

Page 4 of 37 | Total Record : 361