cover
Contact Name
Seno Darmawan Panjaitan
Contact Email
-
Phone
-
Journal Mail Official
jurnal.elkha@untan.ac.id
Editorial Address
Department of Electrical Engineering, Faculty of Engineering, Universitas Tanjungpura, Jl. Prof. Dr. Hadari Nawawi, Pontianak 78124
Location
Kota pontianak,
Kalimantan barat
INDONESIA
ELKHA : Jurnal Teknik Elektro
ISSN : 18581463     EISSN : 25806807     DOI : http://dx.doi.org/10.26418
The ELKHA publishes high-quality scientific journals related to Electrical and Computer Engineering and is associated with FORTEI (Forum Pendidikan Tinggi Teknik Elektro Indonesia / Indonesian Electrical Engineering Higher Education Forum). The scope of this journal covers the theory development, design and applications on Automatic Control, Electronics, Power and Energy Systems, Telecommunication, Informatics, and Industrial Engineering.
Articles 12 Documents
Search results for , issue "Vol. 13 No. 1 April 2021" : 12 Documents clear
Web-Based Presence Application Development at Pontianak State Polytechnic Hendro Cahyono; Hasan Hasan; Lindung Siswanto; M. Ridhwan Sufandi
ELKHA : Jurnal Teknik Elektro Vol. 13 No. 1 April 2021
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v13i1.44831

Abstract

The employees' presence is an important factor for an institution, which is relate to discipline and has an impact on the employee's performance.  Therefore, it is necessary to have specific data collection to record presence, absenteeism, and work activities that has done every day so that employee performance record in real-time and proper. There are many ways that can be done to achieve a good presence information system, one of them is using computer and mobile phone technology which is implemented with a website-based presence application. At the Pontianak State Polytechnic, finger print machine used in the presence process system, but it is still lack in efficiency and effectiveness in data collection, data retrieval as well as data recap calculations, which require a relatively long time. Besides, the bigger risk of error and loss of presence data.  Based on problems, a Web-Based Presence Application Development Information System created at the Pontianak State Polytechnic. The research method used in data collection, which includes research methods, interviews and literature. While software development uses a waterfall model which includes requirements analysis, design, coding, testing and implementation. This web-based presence application can provide convenience in the employee presence process, data search and presence recap calculations, and minimize loss and errors in recording employee presence data. Based on web-based presence application testing and evaluation to thirty-four employees of Pontianak State Polytechnic, it stated that the web-based presence application is suitable for used by all employees of Pontianak State Polytechnic.
Conditioning of Temperature and Soil Moisture in Chrysanthemum Cut Flowers Greenhouse Prototype based on Internet of Things (IoT) Mila Fauziyah; Hari Kurnia Safitri; Denda Dewatama; Erdin Aulianta
ELKHA : Jurnal Teknik Elektro Vol. 13 No. 1 April 2021
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v13i1.43078

Abstract

Currently, cut chrysanthemum cultivation in a greenhouse is still using a conventional system. Temperature and soil moisture are the most important factors in the growth process. If the temperature and humidity of the soil are not conditioned, the roots will quickly rot and slow the growth process of chrysanthemums. Internet of Things is an integrated system with a data-based server that stores data in the cloud from sensors so that the system can be monitored remotely in real-time. Based on this, an integrated system was designed to make it easier for farmers to condition the temperature and humidity of the chrysanthemum flower soil. In temperature conditioning, if the temperature of cut chrysanthemum is detected <24 ℃ then the heater will be "on" by adjusting the fan rotation and vice versa. Meanwhile, soil moisture conditioning is carried out by distributing water if the detected soil moisture is <50%, then the water pump is in the "on" state. The data on the degree of temperature and the percent of soil moisture will be recorded into the cloud which will then be displayed in the form of graphs and history data on the webserver and Android. By using this system, it is found that the growth process of cut chrysanthemums can grow 7 days faster than the standard harvest time of 30 days.
Monitoring and Controlling of pH Levels and Plant Nutrition Supplied by Standalone Photovoltaic in a Greenhouse Hydroponic System using Arduino Uno Lutfi Athanuzul Kurniawan; Amirullah Amirullah
ELKHA : Jurnal Teknik Elektro Vol. 13 No. 1 April 2021
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v13i1.45657

Abstract

This paper aims to implement the prototype model to monitor and control the pH levels and nutrition plant (electrical conductivity-EC) supplied by a standalone photovoltaic (PV) module-connected battery (Lithium-Ion) on the greenhouse hydroponic systems. The pH and EC sensors are connected to the Arduino Uno circuit as a relay control to drive four pumps, i.e. the water flow pump, EC pump, pH up pump, and pH down pump. The greenhouse function to control pests and the impact of environmental non-uniformity caused by variation of wind speed, temperature, or sunlight so that hydroponic plants can grow in an appropriate environment. The Arduino Uno circuit with a 20 × 4 liquid crystal display (LCD) order four relays to monitor and control the four pumps of the greenhouse hydroponic system based on the coding which has been programmed previously. The prototype model is able to monitor and control the pH of hydroponic plant water at the level between 6-7 using a pH-up and pH-down sensor. This model is also able to monitor and control nutrition plant water over 1 mS/cm using an EC sensor. Finally, the proposed prototype is able to monitor and control EC and pH level to regulate plant growth in the greenhouse hydroponic system normally and in real-time.
IoT-based Running Time Monitoring System for Machine Preventive Maintenance Scheduling Erwin Sitompul; Agus Rohmat
ELKHA : Jurnal Teknik Elektro Vol. 13 No. 1 April 2021
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v13i1.44202

Abstract

Machines are valuable assets that need to be protected from damage and failure through proper maintenance measures. This paper proposes a system that automatically monitors the running time of machines and sends notifications regarding their preventive maintenance (PM) schedules. The system core consists of a programmable logic controller (PLC) and a human machine interface (HMI). The HMI is connected to an online platform via internet connection provided by a router, so that the monitoring result can be accessed via Android smartphone or laptop/PC. This IoT-based running time monitoring system (IRTMS) will be particularly helpful in implementation at an production site that consists of multiple various machines. The PM items of a machine may vary from cleaning, changing single component, to an overhaul, each with different time interval. By using the IRTMS, the user will have an overview of the PM schedules anytime and anywhere. The preparation of material, components, or tools can be known ahead of time. For simulation purpose, a prototype is constructed by using components as used in industrial real-life condition. Four output connections are provided to simulate the simultaneous monitoring of four machines. The IRTMS prototype is tested and completely successful on doing the running time monitoring, the running time reset, the PM notifications, and the remote access for monitoring and control.
Reliability Analysis and Maintainability for the Design of Grid and Hybrid Solar Power Plant Systems in Wonogiri Regency Etika Nur’Aini; Rachmawan Budiarto; Bakti Setiawan; Alfian Ma&#039;arif
ELKHA : Jurnal Teknik Elektro Vol. 13 No. 1 April 2021
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v13i1.46011

Abstract

Indonesia has the potential for large solar power plants. It has relatively constant solar radiation because it is close to the equator. Besides, solar energy includes renewable energy that is more environmentally friendly and easier to apply in office areas, especially Wonogiri. However, it turns out that the solar power plant projects that have been built are not yet fully functional, and some have even failed. A lack of responsibility and maintenance causes this carried out after the project is complete. For this reason, it is necessary to estimate the reliability of these components and determine the maintenance schedule before the project is carried out. So that later they have a picture and be better prepared when this project is already underway. The fault tree method's failure factors are expected to create a picture to maintain reliability and determine the prioritized components for maintainability. For the results obtained to be more appropriate, apart from seeing the quantitative analysis output, the fault tree also needs to be adjusted to the component manual or datasheet to determine the replacement of spare parts and their maintenance. So that the resulting schedule for maintenance and replacement of spare parts. Thus, the solar power plant project that has been built will be more reliable and can be appropriately utilized.
Design of Cooling and Heating Tool Using Thermoelectric Peltier Based On Arduino Uno M Kevin Rambang Alam; Helmi Fitriawan; F.X Arinto Setyawan; Umi Murdika
ELKHA : Jurnal Teknik Elektro Vol. 13 No. 1 April 2021
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v13i1.44421

Abstract

Cooler is an electronic device used to cool food and drinks. The current cooling system still uses refrigerants that can damage the ozone layer. The thermoelectric based cooling system can be used as an alternative since it produces sufficient temperature difference on both sides by considering its advantages that is more environmentally friendly. This research is aimed to design and built a cooling and heating system using a thermoelectric Peltier TEC 12715 based on microcontroller Arduino uno. This system uses the Peltier thermoelectric effects as coolant and warmer because it produces temperature difference on both sides. Based on this research, in the no load condition the system can produce a cold temperature of 21,3 ℃ and a hot temperature of 80,2 ℃ in the 40th minute of use. When given a load of 300 ml and 220 ml drink bottles, the system can produce a cold temperature of 22,2 ℃ and a hot temperature of 70,7 ℃ in the 40th minute of use. The TEC 12715 Peltier component used in this research produces the optimal temperature if a voltage of 12 volts and a current of 15 amperes are applied to each Peltier component. The designed system is able to operate repeatedly, properly, and continuously since it is directly connected to alternative current power which is common in households.
Effects of Power Allocation and User Mobility on Non-Orthogonal Multiple Access Using Successive Interference Cancellation Khoirun Niamah; Solichah Larasati; Raudhatul Jannah
ELKHA : Jurnal Teknik Elektro Vol. 13 No. 1 April 2021
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v13i1.41708

Abstract

This research based on simulation to show impact of the power allocation on Non-Orthogonal Multiple Access (NOMA) using Successive Interference Cancellation (SIC). NOMA used superposition code (SC) on the transmitter and SIC on the receiver. NOMA has two categories power domain (PD) and code domain (CD). This research based on PD-NOMA simulated for downlink. The number of users who use the same recourse block are divided into two conditions: user with apply SIC and without SIC base on the value of channel gain from each user. Applying SC on the transmitter and SIC on the receiver will cancel of interference. Novelties of this research are the best performance of power allocation and user mobility based on parameter BER and SNR. Allocation of the power transmit based on value of channel gain every user, where user with value of channel gain is low will be allocated high power transmit, and otherwise. The best result performance of BER vs SNR used ratio power transmit 0.45 dB:0.55 dB, BER  get value SNR for 17 dB and  18 dB. The best performance SNR for mobility of user with speed    = 40 km/h value SNR 18 dB for BER . This research has proposed to show impact of power transmit and interference in performance NOMA.
Electrical Conductivity of Conducting Polymer Composites based on Conducting Polymer/Natural Cellulose Berlian Sitorus; Mariana B Malino
ELKHA : Jurnal Teknik Elektro Vol. 13 No. 1 April 2021
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v13i1.46048

Abstract

Merging each of the best properties of components into a composite design or hybrid architecture opens up opportunities to develop electroconductive materials as conducting polymer composite. This work deals with studying the electrical conductivity of conducting polymer composites made of cellulose extracted from two biomass: empty fruit bunch from oil palm and peat soil. Two kinds of conducting polymers have been used to fabricate the composites, i.e. polyaniline and polypyrrole, which are polymerized from their monomers, aniline and pyrrole. The novelty of this research is the using of biomass as the source of cellulose to produced conducting polymer composites by adding conducting polymer as filler into polymer matrix. We report experimental studies about the influence of monomer addition on the electrical conductivity of composites produced. The conductivity of the material was measured by using the Electrochemical Impedance System method. The experiments were carried out as a four-set experiment, using two different cellulose sources, EFB and peat soil, combined with aniline and pyrrole. The mass ratio variations of the monomer: cellulose are 1, 2, 3, and 4. The conductivities of the composites increased when more aniline or pyrrole was blended with the extracted cellulose from each source, either EFB or peat soil. The conductivity of composite PANI/EFB, which is 3.5 ´10-3 - 1.1´10-2 S/cm, is in the semiconductor range that makes the composites useful for many applications.
Design of a Fuel Sensor Noise Reduction System Using Kalman Filter Rico Bernando Putra; Suhartati Agoes
ELKHA : Jurnal Teknik Elektro Vol. 13 No. 1 April 2021
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v13i1.44589

Abstract

In the field of transportation, telematics is used to obtain vehicle information using Global Positioning System (GPS) technology which is integrated with sensors so that vehicle information can be monitored. One of them is fuel monitoring. The fuel sensor has good accuracy in stationary conditions, but the tability of the data is disturbed when the vehicle is running on an uneven road and causes the tank to shake. This study discusses a fuel sensor noise reduction system using a Kalman filter to overcome the problem of data instability due to shocks. This research aims to reduce noise so that the filter results are closer to the actual result. Filtering is done by changing the process error covariance (Q) and measurement error (R) in the Kalman filter. The fuel sensor noise is simulated using a simulator tank driven by an actuator that can tilt towards the x-axis and the y-axis to resemble the behavior of a vehicle. The fuel level data from the sensor readings are sent by GPS via the cellular network to a server which is then filtered using a web application. From the test results obtained the best filter with (Q) equals 0.1^3 and (R) equals 0.1^3. The average error of the best filter results is 4.73% where this value is 1.92% smaller than the average error of sensor data before filtering, which is 6.65%. Therefore, this proves that the system can reduce noise that occurs in the fuel sensor with the Kalman filter.
Analysis of Battery Management Algorithms on DC Microgrids Vendi Ardianto Nugroho; Awang Noor Indra Wardana; Dwi Joko Suroso
ELKHA : Jurnal Teknik Elektro Vol. 13 No. 1 April 2021
Publisher : Faculty of Engineering, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/elkha.v13i1.42728

Abstract

Management of battery at direct current (DC) microgrids is the essential factor to maintain the balance of power and the bus voltage's stability in the grids. To ensure the quality of battery management is necessary to simulate the operation of the battery management system. This paper presents the simulations in various battery management algorithms.  The simulations were designed to determine the effect of these variations on the balance of the power balance, bus voltage stability, and battery consumption level. The configurations of one, two, and three battery groups could maintain a balance of power balance. The three arrangements could ensure the bus voltage stability at a value of 24 Volts. The variations in the battery group configurations cause different battery consumption levels. The three-battery group configuration has a lower power consumption rate of 0.1% than other battery group configurations. Variations in the battery management algorithms affect power balance, bus voltage stability, and battery electricity consumption.  The result showed the best power balance achieved by an algorithm without counting a value-based state of charge (SoC). The algorithm also committed that the difference between the supply and demand equal to 0 Watts.  For the voltage stability, the algorithms that were counting a value-based SoC can maintain bus voltage stability at a value of 24 Volts.  Nevertheless, other algorithms that rely on less than one SoC value-based and have the lowest mean value of SoC reduction are equal to 0.19%.

Page 1 of 2 | Total Record : 12